【題目】為了迎接黨的十八大的召開,某校組織了以“黨在我心中”為主題的征文比賽,每位學(xué)生只能參加一次比賽,比賽成績只分A、B、C、D四個階段.隨機抽取該校部分學(xué)生的征文比賽成績進行統(tǒng)計分析,并繪制了如下的統(tǒng)計圖表: 根據(jù)表中的信息,解決下列問題:
成績等級 | A | B | C | D |
人數(shù) | 60 | x | y | 10 |
占抽查學(xué)生總數(shù)的百分比 | 30% | 50% | 15% | m |
(1)本次抽查的學(xué)生共有名;
(2)表中x、y和m所表示的數(shù)分別為:X= , y= , m=;
(3)請補全條形統(tǒng)計圖.
【答案】
(1)200
(2)100;30;5%
(3)解:統(tǒng)計圖為:
【解析】解:(1)觀察統(tǒng)計圖和統(tǒng)計表知道A組有60人,占總數(shù)的30%, 故抽查的總?cè)藬?shù)為:60÷30%=200人;(2)x=200×50%=100人,
y=200×15%=30人,
m=10÷200×100%=5%;
【考點精析】認真審題,首先需要了解統(tǒng)計表(制作統(tǒng)計表的步驟:(1)收集整理數(shù)據(jù).(2)確定統(tǒng)計表的格式和欄目數(shù)量,根據(jù)紙張大小制成表格.(3)填寫欄目、各項目名稱及數(shù)據(jù).(4)計算總計和合計并填入表中,一般總計放在橫欄最左格,合計放在豎欄最上格.(5)寫好表格名稱并標明制表時間),還要掌握條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,∠CAB的平分線分別交BD,BC于點E,F(xiàn),作BH⊥AF于點H,分別交AC,CD于點G,P,連接GE,GF.
(1)求證:△OAE≌△OBG;
(2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由;
(3)試求: 的值(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下框中是小明對一道題目的解答以及老師的批改.
題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m的空地,其他三側(cè)內(nèi)墻各保留1m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區(qū)域的面積是288m2? |
我的結(jié)果也正確!
(1)小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.結(jié)果為何正確呢?
(2)請指出小明解答中存在的問題,并補充缺少的過程: 變化一下會怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內(nèi)部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設(shè)AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應(yīng)滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)4-m=-m; (2)56-8x=11+x;
(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明設(shè)計了一個問題,分兩步完成:
(1)已知關(guān)于x的一元一次方程,請畫出數(shù)軸,并在數(shù)軸上標注a與對應(yīng)的點,分別記作A,B;
(2)在第1問的條件下,在數(shù)軸上另有一點C對應(yīng)的數(shù)為y,C與A的距離是C與B的距離的5倍,且C在表示5的點的左側(cè),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上有兩條直線AB、CD相交于點O,且∠BOD=150°(如圖),現(xiàn)按如下要求規(guī)定此平面上點的“距離坐標”: ①點O的“距離坐標”為(0,0);
②在直線CD上,且到直線AB的距離為p(p>0)的點的“距離坐標”為(p,0);在直線AB上,且到直線CD的距離為q(q>0)的點的“距離坐標”為(0,q);
③到直線AB、CD的距離分別為p,q(p>0,q>0)的點的“距離坐標”為(p,q).
設(shè)M為此平面上的點,其“距離坐標”為(m,n),根據(jù)上述對點的“距離坐標”的規(guī)定,解決下列問題:
(1)畫出圖形(保留畫圖痕跡): ①滿足m=1,且n=0的點M的集合;
②滿足m=n的點M的集合;
(2)若點M在過點O且與直線CD垂直的直線l上,求m與n所滿足的關(guān)系式.(說明:圖中OI長為一個單位長)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有學(xué)生2100人,在“文明我先行”活動中,開設(shè)了“法律、禮儀、環(huán)保、感恩、互助”五門校本課程,規(guī)定每位學(xué)生必須且只能選一門,為了解學(xué)生的報名意向,學(xué)校隨機調(diào)查了100名學(xué)生,并制成統(tǒng)計表:校本課程意向統(tǒng)計表
課程類型 | 頻數(shù) | 頻率(%) |
法律 | s | 0.08 |
禮儀 | a | 0.20 |
環(huán)保 | 27 | 0.27 |
感恩 | b | m |
互助 | 15 | 0.15 |
合計 | 100 | 1.00 |
請根據(jù)統(tǒng)計表的信息,解答下列問題;
(1)在這次調(diào)查活動中,學(xué)校采取的調(diào)查方式是(填寫“普查”或“抽樣調(diào)查”);
(2)a= , b= , m=;
(3)如果要畫“校本課程報名意向扇形統(tǒng)計圖”,那么“禮儀”類校本課程對應(yīng)的扇形圓心角的度數(shù)是;
(4)請你估計,選擇“感恩”類校本課程的學(xué)生約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了進一步改進本校七年級數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,校教務(wù)處在七年級所有班級中,每班隨機抽取了6名學(xué)生,并對他們的數(shù)學(xué)學(xué)習(xí)情況進行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調(diào)查的學(xué)生必須從中選一項且只能選一項)結(jié)果進行了統(tǒng)計,現(xiàn)將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是;
(3)若該校七年級共有960名學(xué)生,請你估算該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com