【題目】如圖,已知一次函數(shù)y=ax+b(a,b為常數(shù),a≠0)的圖象與x軸,y軸分別交于點A,B,且與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象在第二象限內(nèi)交于點C,作CD⊥x軸于,若OA=OD=OB=3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)觀察圖象直接寫出不等式0<ax+b≤的解集.
【答案】(1),;(2)﹣3≤x<0
【解析】
(1)根據(jù)已知條件,結(jié)合平行線的性質(zhì)得到CD=2OB=8,又因為OA=OD=OB=3,可求得A(3,0),B(0,4),C(﹣3,8),再利用待定系數(shù)求一次函數(shù)與反比例函數(shù)的解析式即可;(2)根據(jù)C點的坐標(biāo)為(﹣3,8),結(jié)合圖象找到滿足條件x的取值范圍即可.
(1)∵CD⊥OA,
∴DC∥OB,
∴ ,
∴CD=2OB=8,
∵OA=OD=OB=3,
∴A(3,0),B(0,4),C(﹣3,8),
把A、B兩點的坐標(biāo)分別代入y=ax+b可得 ,
解得,
∴一次函數(shù)解析式為,
∵反比例函數(shù)y=的圖象經(jīng)過點C,
∴k=﹣24,
∴反比例函數(shù)的解析式為;
(2)由題意可知所求不等式的解集即為直線AC在x軸上方且在反比例函數(shù)圖象下方的圖象所對應(yīng)的自變量的取值范圍,即線段BC(包含C點,不包含B點)所對應(yīng)的自變量x的取值范圍,
∵C(﹣3,8),
∴0<﹣x+4≤﹣的解集為﹣3≤x<0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(6,6),(6,0),拋物線y=﹣(x﹣m)2+n的頂點P在折線OA﹣AB上運動.
(1)當(dāng)點P在線段OA上運動時,拋物線y=﹣(x﹣m)2+n與y軸交點坐標(biāo)為(0,c).
①用含m的代數(shù)式表示n,
②求c的取值范圍.
(2)當(dāng)拋物線y=﹣(x﹣m)2+n經(jīng)過點B時,求拋物線所對應(yīng)的函數(shù)表達(dá)式;
(3)當(dāng)拋物線與△ABO的邊有三個公共點時,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD繞點D旋轉(zhuǎn),點C落在BC上的點H處,點B恰好落在點A處,得平行四邊形DHAE,若BH=2,CH=3,則DC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個根,且OA>OB.
(1)求的值.
(2)若E為x軸上的點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某商品的進價為每件40元.現(xiàn)在的售價是每件60元.每星期可賣出300件.市場調(diào)查反映:如調(diào)整價格,每漲價一元.每星期要少賣出10件;每降價一元,每星期可多賣出18件.如何定價才能使利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組想測量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD與地面成30°角,且此時測得高1 m的標(biāo)桿的影長為2 m,則電線桿的高度為________m(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 是以 為直徑的 上一點, 于點 ,過點 作 的切線,與 的延長線相交于點 , 是 的中點,連接 并延長與 相交于點 ,延長 與 的延長線相交于點 ,且 .
(1)求證:BF=EF;
(2)求;
(3)求的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com