【題目】已知二次函數(shù)y=ax2+bx+ca0)經(jīng)過點M﹣1,2)和點N1,﹣2),交x軸于A,B兩點,交y軸于C.則:

b=﹣2;

②該二次函數(shù)圖象與y軸交于負半軸;

③存在這樣一個a,使得M、AC三點在同一條直線上;

④若a=1,則OAOB=OC2

以上說法正確的有( 。

A. ①②③④ B. ②③④ C. ①②④ D. ①②③

【答案】C

【解析】①∵二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過點M(1,2)和點N(1,2),

,

解得b=2.故該選項正確;

②由①可得b=2,a+c=0,即c=a<0,

所以二次函數(shù)圖象與y軸交于負半軸.

故該選項正確;

③根據(jù)拋物線圖象的特點,M、A.C三點不可能在同一條直線上.故該選項錯誤

④當(dāng)a=1時,c=1∴該拋物線的解析式為y=x22x1

當(dāng)y=0時,0=x22x+c,利用根與系數(shù)的關(guān)系可得x1x2=c,

OAOB=|c|,

當(dāng)x=0時,y=c,即OC=|c|=1=OC2

∴若a=1,則OAOB=OC2

故該選項正確.

總上所述①②④正確.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=2a,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則 PA+PB的最小值為_____.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】說明:在解答“結(jié)論應(yīng)用”時,從(A),(B)兩題中仸選一題做答

問題探究

啟知學(xué)習(xí)小組在課外學(xué)習(xí)時,發(fā)現(xiàn)了這樣一個問題:如圖(1),在四邊形ABCD中,連接AC,BD,如果ABC與BCD的面積相等,那么ADBC在小組交流時,他們在圖(1)中添加了如圖所示的輔助線,AEBC于點E,DFBC于點F請你完成他們的證明過程

結(jié)論應(yīng)用

在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過A(1,4),B(a,b兩點,過點AACx軸于點C,過點BBDy軸于點D

(A)(1)求反比例函數(shù)的表達式;

(2)如圖(2),已知b=1AC,BD相交于點E,求證:CDAB

(B)(1)求反比例函數(shù)的表達式;

(2)如圖(3),若點B在第三象限,判斷并證明CD與AB的位置關(guān)系

我選擇:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=的圖象如圖所示,則以下結(jié)論:①m<0;②在每個分支上y隨x的增大而增大;③若點A(-1,a),點B(2,b)在圖象上,則a <b;④若點P(x,y)在圖象上,則點P1(-x,y)也在圖象上.其中正確的個數(shù)為(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探究證明】

(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進行探究,提出下列問題,請你給出證明.

如圖①,在矩形ABCD中,EFGH,EF分別交AB,CD于點EF,GH分別交AD,BC于點GH.求證: ;

【結(jié)論應(yīng)用】

(2)如圖②,在滿足(1)的條件下,又AMBN,點M,N分別在邊BC,CD上,若,則的值為 ;

【聯(lián)系拓展】

(3)如圖③,四邊形ABCD中,∠ABC=90°AB=AD=10,BC=CD=5,AMDN,點M,N分別在邊BC,AB上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,數(shù)軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數(shù)為,點B表示的數(shù)為.

(1)若A、B移動到如圖所示位置,計算的值.

(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應(yīng)的數(shù),并計算.

(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時大多少?請列式計算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是2,對角線AC、BD相交于點O,點E、F分別在邊ADAB上,且OEOF,則四邊形AFOE的面積是( 。

A.4B.2C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MHx軸于點H,且tanAHO=2.

(1)求k的值;

(2)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上是否存在點P,使得PM+PN最。咳舸嬖,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖象如圖所示,拋物線的對稱軸為直線x=﹣1,P1(x1,y1),P2(x2,y2)是拋物線上的點,P3(x3,y3)是直線l上的點,且x3<﹣1<x1<x2,則y1,y2,y3的大小關(guān)系是( 。

A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3

查看答案和解析>>

同步練習(xí)冊答案