【題目】已知代數(shù)式(mx2+2mx-1)(xm+3nx+2)化簡(jiǎn)以后是一個(gè)四次多項(xiàng)式,并且不含二次項(xiàng),請(qǐng)分別求出m,n的值,并求出一次項(xiàng)系數(shù).

【答案】m=2,n=-,一次項(xiàng)系數(shù)為.

【解析】

先把代數(shù)式按照多項(xiàng)式乘以多項(xiàng)式展開,因?yàn)榛?jiǎn)后是一個(gè)四次多項(xiàng)式,所以x的最高指數(shù)m+2=4;不含二次項(xiàng),即二次項(xiàng)的系數(shù)為0,即可解答.

(mx2+2mx-1)(xm+3nx+2)=mxm2+3mnx3+2mx2+2mxm1+6mnx2+4mxxm-3nx-2,

因?yàn)樵摱囗?xiàng)式是四次多項(xiàng)式,

所以m+2=4,解得m=2.

所以原式=2x4+(6n+4)x3+(3+12n)x2+(8-3n)x-2.

因?yàn)槎囗?xiàng)式不含二次項(xiàng),

所以3+12n=0,解得n=-

所以一次項(xiàng)系數(shù)為8-3n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程組:

(1)(代入法);

(2)(加減法);

(3);

4 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線y= (x﹣1)2﹣3.
(1)寫出拋物線的開口方向、對(duì)稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個(gè)最大(。┲;
(3)設(shè)拋物線與y軸的交點(diǎn)為P,與x軸的交點(diǎn)為Q,求直線PQ的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“十一”黃金周期間,深圳世界之窗風(fēng)景區(qū)在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù)):

日期

1日

2日

3日

4日

5日

6日

7日

人數(shù)變化

單位:萬(wàn)人

+1.6

+0.8

+0.4

﹣0.4

﹣0.8

+0.2

﹣1.2

(1)請(qǐng)判斷七天內(nèi)游客人數(shù)最多的是   日,最少的是   日.

(2)以9月30日的游客人數(shù)為0點(diǎn),用折線統(tǒng)計(jì)圖表示這7天的游客人數(shù)的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB是一鋼架,AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長(zhǎng)度都與OE相等,則最多能添加這樣的鋼管( )根.

A. 2 B. 4 C. 5 D. 無(wú)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論: ①4a﹣b<0;
②abc<0;
③a+b+c<0;
④a﹣b+c>0;
⑤4a+2b+c>0.
其中錯(cuò)誤的個(gè)數(shù)有( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:|﹣2012|+(3.14﹣π)0+sin30°﹣21
(2)先化簡(jiǎn),再求值: ,其中

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,OBOC分別平分∠ABC和∠ACB,過ODEBC,分別交AB、AC于點(diǎn)D、E,若DE=5,BD=3,則線段CE的長(zhǎng)為( 。

A. 3 B. 1 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB,延長(zhǎng)AB到C,使BC=AB,D為AC的中點(diǎn),若BD=6.

(1)畫出圖形,求AB的長(zhǎng);

(2)若點(diǎn)E在直線AB上,AE=3,求線段ED的長(zhǎng);

(3)若點(diǎn)F在直線AB上,AF=k,求線段FD的長(zhǎng)(請(qǐng)直接寫出答案、用含k的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案