下列計(jì)算正確的選項(xiàng)是( 。
| A. | ﹣1= | B. | ()2=5 | C. | 2a﹣b=ab | D. | = |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,順次連接邊長(zhǎng)為1的正方形ABCD四邊的中點(diǎn),得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點(diǎn),得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點(diǎn),得到四邊形A3B3C3D3,…,按此方法得到的四邊形A8B8C8D8的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,點(diǎn)M(,),以點(diǎn)M為圓心,OM長(zhǎng)為半徑作⊙M . 使⊙M與直線OM的另一交點(diǎn)為點(diǎn)B,與軸, 軸的另一交點(diǎn)分別為點(diǎn)D,A(如圖),連接AM.點(diǎn)P是上的動(dòng)點(diǎn).
(1)寫(xiě)出∠AMB的度數(shù);
(2)點(diǎn)Q在射線OP上,且OP·OQ=20,過(guò)點(diǎn)Q作QC垂直于直線OM,垂足為C,直線QC交軸于點(diǎn)E.
①當(dāng)動(dòng)點(diǎn)P與點(diǎn)B重合時(shí),求點(diǎn)E的坐標(biāo);
②連接QD,設(shè)點(diǎn)Q的縱坐標(biāo)為,△QOD的面積為S.求S與的函數(shù)關(guān)系式及S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定.
定義∶六個(gè)內(nèi)角相等的六邊形叫等角六邊形.
(1)研究性質(zhì)
①如圖1,等角六邊形ABCDEF中,三組正對(duì)邊AB與DE,BC與EF,CD與AF分別有什么位置關(guān)系?證明你的結(jié)論.
②如圖2,等角六邊形ABCDEF中,如果有AB=DE,則其余兩組正對(duì)邊BC與EF,CD與AF相等嗎?證明你的結(jié)論.
③如圖3,等角六邊形ABCDEF中.如果三條正對(duì)角線AD,BE,CF相交于一點(diǎn)O,那么三組正對(duì)邊AB與DE,BC與EF,CD與AF分別有什么數(shù)量關(guān)系?證明你的結(jié)論.
(2)探索判定
三組正對(duì)邊分別平行的六邊形,至少需要幾個(gè)內(nèi)角為120°才能保證該六變形—定是等角六邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正六邊形的每一個(gè)內(nèi)角都相等,則其中一個(gè)內(nèi)角α的度數(shù)是( 。
| A. | 240° | B. | 120° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
將分式方程=去分母后得到的整式方程,正確的是( )
| A. | x﹣2=2x | B. | x2﹣2x=2x | C. | x﹣2=x | D. | x=2x﹣4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某旅行社組織一批游客外出旅游,原計(jì)劃租用45座客車若干輛,但有15人沒(méi)有座位;若租用同樣數(shù)量的60座客車,則多出一輛車,且其余客車恰好坐滿.已知45座客車租金為每輛220元,60座客車租金為每輛300元,問(wèn):
(1)這批游客的人數(shù)是多少?原計(jì)劃租用多少輛45座客車?
(2)若租用同一種車,要使每位游客都有座位,應(yīng)該怎樣租用才合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com