A. | $\frac{π{R}^{2}}{n}$-$\frac{1}{2}$R2sin$\frac{360°}{n}$ | B. | $\frac{π{R}^{2}}{n}$-$\frac{1}{2}$R2sin$\frac{180°}{n}$ | ||
C. | $\frac{2π{R}^{2}}{n}$-$\frac{1}{2}$R2sin$\frac{360°}{n}$ | D. | $\frac{2π{R}^{2}}{n}$-$\frac{1}{2}$R2sin$\frac{180°}{n}$ |
分析 首先連接OA,OB,過點O作OC⊥AB于點C,由AB是半徑為R的⊙O內(nèi)接正n邊形的邊長,利用三角形函數(shù)的性質(zhì),可求得△OAB的面積,繼而求得扇形OAB的面積,即可求得答案.
解答 解:連接OA,OB,過點O作OC⊥AB于點C,
則∠AOB=$\frac{360°}{n}$,
∴∠AOC=$\frac{1}{2}$∠AOB=$\frac{180°}{n}$,
∴OC=OA•cos∠AOC=R•cos$\frac{180°}{n}$,AC=OC•sin∠AOC=R•sin$\frac{180°}{n}$,
∴AB=2AC=2Rsin$\frac{180°}{n}$,
∴S△OAB=$\frac{1}{2}$AB•OC=$\frac{1}{2}$×R•cos$\frac{180°}{n}$×2Rsin$\frac{180°}{n}$=$\frac{1}{2}$R2sin$\frac{360°}{n}$,
∵S扇形OAB=$\frac{π{R}^{2}}{n}$,
∴S陰影=$\frac{π{R}^{2}}{n}$-$\frac{1}{2}$R2sin$\frac{360°}{n}$.
故選A.
點評 此題考查了正多邊形與圓的知識以及三角函數(shù)等知識.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個 | B. | 7個 | C. | 11個 | D. | 16個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲乙都對 | B. | 甲乙都不對 | C. | 甲對,乙不對 | D. | 甲不對,已對 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com