【題目】如圖1已知拋物線y=ax2+bx﹣3x軸相交于A(﹣1,0)、B(3,0),P為拋物線上第四象限上的點(diǎn).

(1)求該拋物線的函數(shù)關(guān)系式;

(2)如圖1,過(guò)點(diǎn)PPD⊥x軸于點(diǎn)D,PDBC于點(diǎn)E,當(dāng)線段PE的長(zhǎng)度最大時(shí),求點(diǎn)P的坐標(biāo)

(3)如圖2,當(dāng)線段PE的長(zhǎng)度最大時(shí),作PF⊥BC于點(diǎn)F,連結(jié)DF.在射線PD上有一點(diǎn)Q,滿足∠PQB=∠DFB,問(wèn)在坐標(biāo)軸上是否存在一點(diǎn)R,使得SRBE=SQBE?如果存在,直接寫出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=x2﹣2x﹣3;(2)當(dāng)m=時(shí),PE最大,此時(shí)P(,﹣);(3)R的坐標(biāo)為:(﹣,0)或(,0)或(0,)或(0,﹣).

【解析】

(1)利用待定系數(shù)法求出拋物線解析式;

(2)首先求出點(diǎn)C的坐標(biāo)再由待定系數(shù)法求得直線BC的解析式是y=x﹣3;設(shè)Pmm2﹣2m﹣3).過(guò)點(diǎn)PPDx軸于點(diǎn)D,PDBC于點(diǎn)E,從而Em,m﹣3),PE=(m﹣3)﹣(m2﹣2m﹣3)=﹣m2+3m=﹣(m2,從而求得當(dāng)m時(shí),PE最大,此時(shí)P);

(3)首先求得點(diǎn)E的坐標(biāo),PE長(zhǎng)度,進(jìn)而得出BD的長(zhǎng)度,根據(jù)點(diǎn)B、C的坐標(biāo)判斷出△OBC是等腰直角三角形,進(jìn)而根據(jù)勾股定理得到BE的長(zhǎng)度根據(jù)對(duì)頂角相等推知在直角△PEF,∠PEF=90°,根據(jù)勾股定理得出EF的長(zhǎng)度從而求得BF的長(zhǎng)度,然后判斷出△QBE∽△FDB由相似三角形的對(duì)應(yīng)邊成比例列出方程,求得QE的長(zhǎng)度,根據(jù)三角形的面積公式求出SBQE.當(dāng)R點(diǎn)在x軸上時(shí)設(shè)Rn,0),BR=|3﹣n|,根據(jù)SRBE=SQBE列出方程求得n的值,得出R點(diǎn)的坐標(biāo);當(dāng)點(diǎn)Ry軸上時(shí),設(shè)R(0,z),SBER=SBRCSREC列出方程求得z的值再求出R點(diǎn)在y軸上時(shí)的坐標(biāo),從而得出本題的答案

1)將A(﹣1,0)、B(3,0)分別代入y=ax2+bx﹣3解得,所以該拋物線解析式為y=x2﹣2x﹣3;

(2)如圖1,x=0代入y=x2﹣2x﹣3,y=﹣3,∴C(0,﹣3).

設(shè)直線BC的解析式為y=kx+b,C(0,﹣3)與B(3,0),分別代入得解得,∴直線BC的解析式為y=x﹣3.

設(shè)Pmm2﹣2m﹣3),Em,m﹣3),∴PE=(m﹣3)﹣(m2﹣2m﹣3)=﹣m2+3m=﹣(m2故當(dāng)m時(shí),PE最大,此時(shí)P);

(3)如圖2,當(dāng)線段PE的長(zhǎng)度最大時(shí),P),E),PE,∴D,0),∴BD

B(3,0),C(0,﹣3),∴OB=OC=3,∴△OBC是等腰直角三角形,∴∠OBC=45°.

在直角△DBE,∠ABC=45°,BD,∴BE,∠DEB=45°,∴∠PEF=45°.

在直角△PEF,∠PEF=45°,PE,∴EF,∴BF

∵∠PQB=∠DFB,∠DBE=∠DEB=45°,∴△QBE∽△FDB,∴,,∴QE

SBQEQEDB

當(dāng)點(diǎn)Rx軸上時(shí),設(shè)Rn,0),BR=|3﹣n|,∴SRBEBRDE,|3﹣n||3﹣n|,解得n1,n2,∴R,0)或(,0)

當(dāng)Ry軸上時(shí),設(shè)R(0,z),SBER=SBRCSREC得到3×|z+3||z+3|

解得z1,z2,∴R(0,)或(0,).

綜上所述符合條件的點(diǎn)R的坐標(biāo)為:(,0)或(,0)或(0,)或(0,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價(jià)為15/千克,如果售價(jià)為20/千克,那么每天可售出250千克,如果售價(jià)為25/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價(jià)x(元/千克)之間 存在一次函數(shù)關(guān)系.

(1)求yx之間的函數(shù)關(guān)系式;

(2)若該超市每天要獲得利潤(rùn)810元,同時(shí)又要讓消費(fèi)者得到實(shí)惠,則售價(jià)x應(yīng)定于多少元?

(3)若櫻桃的售價(jià)不得高于28/千克,請(qǐng)問(wèn)售價(jià)定為多少時(shí),該超市每天銷售櫻桃所獲的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四根長(zhǎng)度分別為34,5,xx為正整數(shù))的木棒,從中任取三根,首尾順次相接都能組成一個(gè)三角形則組成的三角形的周長(zhǎng)(

A.最小值是11B.最小值是12C.最大值是14D.最大值是15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下小明從中任意抽取一張記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和若和為奇數(shù)則小明勝;若和為偶數(shù)則小亮勝

(1)請(qǐng)你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率

(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說(shuō)說(shuō)你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在中,,、分別是的平分線,、相交于點(diǎn)

1)請(qǐng)你判斷并寫出之間的數(shù)量關(guān)系;

2)試判斷線段、之間的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ADE均為等腰直角三角形,∠BAC=DAE=90°,將ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),連接DC,點(diǎn)M,P,N分別為DE,DCBC的中點(diǎn),若AD=3,AB=7,則線段MN的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】深圳市民中心廣場(chǎng)上有旗桿如圖①所示,某學(xué)校興趣小組測(cè)量了該旗桿的高度,如圖②,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為16米,落在斜坡上的影長(zhǎng)CD為8米,AB⊥BC;同一時(shí)刻,太陽(yáng)光線與水平面的夾角為45°.1米的標(biāo)桿EF豎立在斜坡上的影長(zhǎng)FG為2米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,5)、Q(m,n)在反比例函數(shù)的圖象上,過(guò)點(diǎn)P分別作x軸、y軸的垂線,垂足分別為A、B,點(diǎn)Q為圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)Q分別作x軸、y軸的垂線,垂足分別為C、D,兩垂線相交于點(diǎn)E,隨著m的增大,四邊形OCQD與四邊形OAPB不重合的面積變化為( )

A. 先增大后減小 B. 先減小后增大 C. 先減小后增大再減小 D. 先增大后減小再增大

查看答案和解析>>

同步練習(xí)冊(cè)答案