【題目】在坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣3,0)和B(1,0),與y軸交于點(diǎn)C,
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)D為此拋物線上位于直線AC上方的一個動點(diǎn),當(dāng)△DAC的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)設(shè)拋物線頂點(diǎn)關(guān)于y軸的對稱點(diǎn)為M,記拋物線在第二象限之間的部分為圖象G.點(diǎn)N是拋物線對稱軸上一動點(diǎn),如果直線MN與圖象G有公共點(diǎn),請結(jié)合函數(shù)的圖象,直接寫出點(diǎn)N縱坐標(biāo)t的取值范圍.
【答案】
(1)
解:設(shè)拋物線的解析式為y=a(x+3)(x﹣1).
由題意可知:a=﹣1.
∴拋物線的解析式為y=﹣1(x+3)(x﹣1)即y=﹣x2﹣2x+3.
(2)
解:如圖所示:過點(diǎn)D作DE∥y軸,交AC于點(diǎn)E.
∵當(dāng)x=0時(shí),y=3,
∴C(0,3).
設(shè)直線AC的解析式為y=kx+3.
∵將A(﹣3,0)代入得:﹣3k+3=0,解得:k=1,
∴直線AC的解析式為y=x+3.
設(shè)點(diǎn)D的坐標(biāo)為(x,﹣x2﹣2x+3),則E點(diǎn)的坐標(biāo)為(x,x+3).
∴DE=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.
∴△ADC的面積= DEOA= ×3×(﹣x2﹣3x)=﹣ (x+ )2+ .
∴當(dāng)x=﹣ 時(shí),△ADC的面積有最大值.
∴D(﹣ , ).
(3)
解:如圖2所示:
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴拋物線的頂點(diǎn)坐標(biāo)為(﹣1,4).
∵點(diǎn)M與拋物線的頂點(diǎn)關(guān)于y軸對稱,
∴M(1,4).
∵將x=1代入直線AC的解析式得y=4,
∴點(diǎn)M在直線AC上.
∵將x=﹣1代入直線AC的解析式得:y=2,
∴N(﹣1,2).
又∵當(dāng)點(diǎn)N′與拋物線的頂點(diǎn)重合時(shí),N′的坐標(biāo)為(﹣1,4).
∴當(dāng)2<t≤4時(shí),直線MN與函數(shù)圖象G有公共點(diǎn).
【解析】(1)設(shè)拋物線的解析式為y=a(x+3)(x﹣1),然后將a=﹣1代入即可求得拋物線的解析式;(2)過點(diǎn)D作DE∥y軸,交AC于點(diǎn)E.先求得點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求得直線AC的解析式,設(shè)點(diǎn)D的坐標(biāo)為(x,﹣x2﹣2x+3),則E點(diǎn)的坐標(biāo)為(x,x+3),于是得到DE的長(用含x的式子表示,接下來,可得到△ADC的面積與x的函數(shù)關(guān)系式,最后依據(jù)配方法可求得三角形的面積最大時(shí),點(diǎn)D的坐標(biāo);(3)如圖2所示:先求得拋物線的頂點(diǎn)坐標(biāo),于是可得到點(diǎn)M的坐標(biāo),可判斷出點(diǎn)M在直線AC上,從而可求得點(diǎn)N的坐標(biāo),當(dāng)點(diǎn)N′與拋物線的頂點(diǎn)重合時(shí),N′的坐標(biāo)為(﹣1,4),于是可確定出t的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0,
(1)當(dāng)k為何值時(shí),方程有實(shí)數(shù)根;
(2)設(shè)x1 , x2是方程的兩個實(shí)數(shù)根,且x12+x22=4,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),且AE∥CD,CE∥AB.
(1)證明:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(計(jì)算結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O在直線AB上,點(diǎn)A1、A2、A3,…在射線OA上,點(diǎn)B1、B2、B3,…在射線OB上,圖中的每一個實(shí)線段和虛線段的長均為一個單位長度,一個動點(diǎn)M從O點(diǎn)出發(fā),按如圖所示的箭頭方向沿著實(shí)線段和以O為圓心的半圓勻速運(yùn)動,速度為每秒1個單位長度,按此規(guī)律,則動點(diǎn)M到達(dá)A101點(diǎn)處所需時(shí)間為____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地開辟一塊長方形的荒地用于新建一個以環(huán)保為主題的公園.已知這塊荒地的長是寬的2倍,它的面積為400 000 m2,那么:
(1)荒地的寬是多少?有1 000 m嗎?(結(jié)果保留一位小數(shù))
(2)如果要求結(jié)果保留整數(shù),那么寬大約是多少?
(3)計(jì)劃在該公園中心建一個圓形花圃,面積是800 m2,你能估計(jì)它的半徑嗎?(要求結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜邊AC,交AB于D,E是垂足,連接CD.若BD=1,則AC的長是( )
A.2
B.2
C.4
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過點(diǎn)A的直線,BD⊥DE于D,CE⊥DE于點(diǎn)E;
(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:AB⊥AC;
(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,AD是BC邊上的高,AE平分∠BAC.
(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,0)、(5,0)、(0、﹣5).
(1)求此二次函數(shù)的解析式;
(2)當(dāng)0≤x≤5時(shí),求此函數(shù)的最小值與最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com