【題目】已知:二次函數(shù)y=x2-4x+3.
(1)將y=x2-4x+3化成的形式;
(2)求出該二次函數(shù)圖象的對稱軸和頂點(diǎn)坐標(biāo);
(3)當(dāng)x取何值時(shí),y<0.
【答案】(1)y=x2-4x+4-4+3=(x-2)2-1.(2)對稱軸為x=2,頂點(diǎn)坐標(biāo)為(2,-1).(3)當(dāng)1<x<3時(shí),y<0.
【解析】
(1)利用配方法先提出二次項(xiàng)系數(shù),再加上一次項(xiàng)系數(shù)的一半的平方來湊完全平方式,把一般式轉(zhuǎn)化為頂點(diǎn)式;
(2)利用(1)的解析式求該二次函數(shù)圖象的對稱軸和頂點(diǎn)坐標(biāo);
(3)根據(jù)二次函數(shù)的圖象的單調(diào)性解答.
解:(1)y=x2-4x+4-4+3=(x-2)2-1.
(2)對稱軸為x=2,頂點(diǎn)坐標(biāo)為(2,-1).
(3)當(dāng)1<x<3時(shí),y<0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以每件60元的價(jià)格購進(jìn)一批貨物,零售價(jià)為每件80元時(shí),可以賣出100件(按相關(guān)規(guī)定零售價(jià)不能超過80元).如果零售價(jià)在80元的基礎(chǔ)上每降價(jià)1元,可以多賣出10件,當(dāng)零售價(jià)在80元的基礎(chǔ)上降價(jià)x元時(shí),能獲得2160元的利潤,根據(jù)題意,可列方程為( 。
A.x(100+10x)=2160B.(20﹣x)(100+10x)=2160
C.(20+x)(100+10x)=2160D.(20﹣x)(100﹣10x)=2160
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是上的點(diǎn),且,是的中點(diǎn).
(1)與是否相似?為什么?
(2)與的關(guān)系是什么?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是矩形ABCD的對角線的交點(diǎn),∠AOB=60°,作DE∥AC,CE∥BD,DE、CE相交于點(diǎn)E.四邊形OCED的周長是20,則BC=( )
A.5B.5
C.10D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AB=,∠BCD=120°,M為對角線BD上一點(diǎn)(M不與點(diǎn)B、D重合),過點(diǎn)MN∥CD,使得MN=CD,連接CM、AM、BN.
(1)當(dāng)∠DCM=30°時(shí),求DM的長度;
(2)如圖2,延長BN、DC交于點(diǎn)E,求證:AM·DE=BE·CD;
(3)如圖3,連接AN,則AM+AN的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD邊AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),過點(diǎn)E作EF⊥DE交BC于點(diǎn)F,連接DF,已知AB=4cm,AD=2cm,設(shè)A,E兩點(diǎn)間的距離為xcm,△DEF面積為ycm2.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點(diǎn)、畫圖、測量、分析,得到了x與y的幾組值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF面積最大時(shí),AE的長度為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC于點(diǎn)E.若一個(gè)三角形模板與△ABE完全重合地疊放在一起,現(xiàn)將該模板繞 點(diǎn)E順時(shí)針旋轉(zhuǎn).要使該模板旋轉(zhuǎn)60°后,三個(gè)頂點(diǎn)仍在平行四邊形ABCD的邊上,請?zhí)骄科叫兴倪呅?/span>ABCD的角和邊需要滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,AB=4,點(diǎn)P在上運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A、B重合),且∠APB=30°,設(shè)圖中陰影部分的面積為y.
(1)⊙O的半徑為 ;
(2)若點(diǎn)P到直線AB的距離為x,求y關(guān)于x的函數(shù)表達(dá)式,并直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O與BC交于點(diǎn)D,與AC交于點(diǎn)E,AD,BE相交于點(diǎn)H,過點(diǎn)B作⊙O的切線交AC的延長線于點(diǎn)F,若CD=BD.
(1)求證:AC=AB.
(2)若AH:DH=3:1,求tan∠CBF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com