【題目】在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)DOB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DFDE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)EA點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).

(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出tan∠DEF的值.

(3)連結(jié)AD,當(dāng)ADDEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.

【答案】(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)

【解析】試題(1)當(dāng)t=3時(shí),點(diǎn)EAB的中點(diǎn),由三角形的中位線定理得出DE∥EADE=OA=4,再由矩形的性質(zhì)證出DE⊥AB,得出∠OAB=∠DEA=90°,證出四邊形DFAE是矩形,得出DF=AE=3即可;

2)作DM⊥OA于點(diǎn)M,DN⊥ABN,證明四邊形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行線得出比例式,,由三角形中位線定理得出DM=AB=3,DN=OA=4,證明ΔDMF∽ΔDNE,得出,再由三角函數(shù)的定義即可得解;

3)作DM⊥OAM,DN⊥ABN,若ADΔDEF的面積分為1:2的兩部分,設(shè)ADEF于點(diǎn)G,則點(diǎn)GEF的三等分點(diǎn).

當(dāng)點(diǎn)E到達(dá)中點(diǎn)之前時(shí),NE=3-t,由ΔDMF∽ΔDNE得:MF,求出AF=4+MF=,得出G,),求出直線AD的解析式為y=-+6,把G,)代入即可求出t的值;

當(dāng)點(diǎn)超過中點(diǎn)之后,NEt-3,由由ΔDMF∽ΔDNE得:MF,求出AF=4-MF=,得出G,),代入直線AD的解析式y=-+6即可求出t的值;

試題解析: (1)當(dāng)t=3時(shí),點(diǎn)EAB的中點(diǎn),

∵A80),C0,6),

∴OA=8OC=6,

點(diǎn)DOB的中點(diǎn),

∴DE∥OA,DE=OA=4,

四邊形OABC是矩形,

∴OA⊥AB,

∴DE⊥AB

∴∠OAB=∠DEA=90°,

∵DF⊥DE,

∴∠EDF=90°,

四邊形DFAE是矩形,

∴DF=AE=3

2∠DEF的大小不變;理由如下:

DM⊥OAM,DN⊥ABN,如圖2所示:

四邊形OABC是矩形,

∴OA⊥AB,

四邊形DMAN是矩形,

∴∠MDN=90°,DM∥AB,DN∥OA

,,

點(diǎn)DOB的中點(diǎn),

∴M、N分別是OA、AB的中點(diǎn),

∴DM=AB=3,DN=OA=4,

∵∠EDF=90°,

∴∠FDM=∠EDN,

∵∠DMF=∠DNE=90°,

∴△DMF∽△DNE

,

∵∠EDF=90°,

∴tan∠DEF=

3)作DM⊥OAM,DN⊥ABN

AD△DEF的面積分成12的兩部分,

設(shè)ADEF于點(diǎn)G,則點(diǎn)GEF的三等分點(diǎn);

當(dāng)點(diǎn)E到達(dá)中點(diǎn)之前時(shí),如圖3所示,NE=3﹣t,

△DMF∽△DNE得:MF=3﹣t),

∴AF=4+MF=﹣t+,

點(diǎn)GEF的三等分點(diǎn),

∴G),

設(shè)直線AD的解析式為y=kx+b

A8,0),D4,3)代入得:,

解得:,

直線AD的解析式為y=﹣x+6,

G,)代入得:t=;

當(dāng)點(diǎn)E越過中點(diǎn)之后,如圖4所示,NE=t﹣3,

△DMF∽△DNE得:MF=t﹣3),

∴AF=4﹣MF=﹣t+,

點(diǎn)GEF的三等分點(diǎn),

∴G,),

代入直線AD的解析式y=﹣x+6得:t=;

綜上所述,當(dāng)AD△DEF分成的兩部分的面積之比為12時(shí),t的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AC為對(duì)角線,E是邊AD上一點(diǎn),BE⊥AC交AC于點(diǎn)F,BE、CD的延長(zhǎng)線交于點(diǎn)G,且∠ABE=∠CAD.

(1)求證:四邊形ABCD是矩形;

(2)如果AE=EG,求證:AC2=BCBG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+cx軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對(duì)稱軸是直線x=1,直線BC與拋物線的對(duì)稱軸交于點(diǎn)D.

⑴求拋物線的函數(shù)表達(dá)式;

⑵求直線BC的函數(shù)表達(dá)式;

⑶點(diǎn)Ey軸上一動(dòng)點(diǎn),CE的垂直平分線交CE于點(diǎn)F,交拋物線于P、Q兩點(diǎn),且點(diǎn)P在第三象限.①當(dāng)線段PQ=AB時(shí),求tanCED的值;②當(dāng)以點(diǎn)C、D、E為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長(zhǎng)線上一點(diǎn),CD切半圓O于點(diǎn)D。連結(jié)OD,作BE⊥CD于點(diǎn)E,交半圓O于點(diǎn)F。已知CE=12,BE=9,

(1)求證:△COD∽△CBE;

(2)求半圓O的半徑的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某樓盤一樓是車庫(暫不銷售),二樓至二十三樓均為商品房(對(duì)外銷售).商品房售價(jià)方案如下:第八層售價(jià)為3000/2,從第八層起每上升一層,每平方米的售價(jià)增加40元;反之,樓層每下降一層,每平方米的售價(jià)減少20.已知商品房每套面積均為120平方米.開發(fā)商為購買者制定了兩種購房方案:

方案一:購買者先交納首付金額(商品房總價(jià)的30%),再辦理分期付款(即貸款).

方案二:購買者若一次付清所有房款,則享受8%的優(yōu)惠,并免收五年物業(yè)管理費(fèi)(已知每月物業(yè)管理費(fèi)為a元)

1函數(shù)解析式;

2】小張已籌到120000元,若用方案一購房,他可以購買哪些樓層的商品房呢?

3】有人建議老王使用方案二購買第十六層,但他認(rèn)為此方案還不如不免收物業(yè)管理費(fèi)而直接享受9%的優(yōu)惠劃算.你認(rèn)為老王的說法一定正確嗎?請(qǐng)用具體的數(shù)據(jù)闡明你的看法。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】微信“搶紅包”游戲現(xiàn)在受到越來越多的人喜歡,其中有一種玩法“拼手氣紅包”,用戶設(shè)置好總金額以及紅包個(gè)數(shù)后,可以隨機(jī)生成金額不等的紅包,現(xiàn)有一用戶發(fā)了三個(gè)“拼手氣紅包”,總金額為5元,隨機(jī)被甲、乙、丙三人搶到。

(1)下列事件中,確定事件是__________。

①甲、乙兩人搶到的紅包金額之和比丙搶到的紅包金額多;

②甲搶到的金額為0.5元的紅包;

③乙搶到金額為6元的紅包。

(2)隨機(jī)紅包分為大、中、小三個(gè)金額,用畫樹狀圖或列表的方法求出連抽兩次最大金額的紅包概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,EFAB,垂足分別為DF,∠1=∠2,

(1)試判斷DGBC的位置關(guān)系,并說明理由.

(2)若∠A70°,∠B40°,求∠AGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長(zhǎng)為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C處有一些蜂蜜,此時(shí)一只螞蟻正好也在杯外壁,離杯上沿4cm與蜂蜜相對(duì)的點(diǎn)A處,那么螞蟻要吃到甜甜的蜂蜜所爬行的最短距離是(

A.13B.14C.15D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在舊城改造中,計(jì)劃在市內(nèi)一塊如下圖所示的三角形空地上種植草皮以美化環(huán)境,已知這種草皮每平方米售價(jià)元,則購買這種草皮至少需要______.

查看答案和解析>>

同步練習(xí)冊(cè)答案