【題目】如圖,在等腰三角形中,,邊上中點,過點作,交,交,若,則的長為_________

【答案】6

【解析】

連接BD,利用ASA證出△EDB≌△FDC,從而證出SEDB=SFDC,從而求出SDBC,然后根據(jù)三角形的面積即可求出CD,從而求出AC,最后利用勾股定理即可求出結(jié)論.

解:連接BD

∵在等腰三角形中,,邊上中點,

AB=BCBD=CD=AD,∠BDC=90°,∠EBD=,∠C=45°

∴∠EDF=BDC=90°,∠EBD=C=45°

∴∠EDB=FDC

在△EDB和△FDC

∴△EDB≌△FDC

SEDB=SFDC

SDBC= SFDCSBDF= SEDBSBDF=

CD2=18

CD=

AC=2CD=

AB2BC2=AC2

2AB2=2

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人分別騎自行車和摩托車,從同一地點沿相同的路線前往距離80km的某地,圖中l1,l2分別表示甲、乙兩人離開出發(fā)地的距離skm)與行駛時間th)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:

1)甲、乙兩人誰到達(dá)目的地較早?早多長時間?

2)分別求甲、乙兩人行駛過程中st的函數(shù)關(guān)系式;

3)試確定當(dāng)兩輛車都在行駛途中(不包括出發(fā)地和目的地)時,t的取值范圍;并在這一時間段內(nèi),求t為何值時,摩托車行駛在自行車前面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線相交于點O,AC=2,BD=2,將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的周長為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD,D=100°,AC平分BCD,ACB=40°,BAC=70°.

(1)ADBC平行嗎?試寫出推理過程;

(2)DACEAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DBC邊上一點,EAC邊上一點,且∠ADE=60°.

(1)求證:△ABD∽△DCE;

(2)若BD=3,CE=2,求△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù)的四個命題:①當(dāng)時, 有最小值10;為任意實數(shù), 時的函數(shù)值大于時的函數(shù)值;③若,且是整數(shù),當(dāng)時, 的整數(shù)值有;④若函數(shù)圖象過點,其中, ,則.其中真命題的序號是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班級為準(zhǔn)備元旦聯(lián)歡會,欲購買價格分別為2元、4元和10元的三種獎品,每種獎品至少購買一件,共買16件,恰好用50.2元的獎品購買a.

(1)用含a的代數(shù)式表示另外兩種獎品的件數(shù);

(2)請你設(shè)計購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)三天假期的某一天,小明全家上午8時自駕小汽車從家里出發(fā),到章丘某旅游景點游玩.該小汽車離家的距離S(千米)與時間t(小時)的關(guān)系如圖所示.根據(jù)圖象提供的有關(guān)信息,下列說法中錯誤的是( )

A. 景點離小明家180千米 B. 小明到家的時間為17點

C. 返程的速度為60千米每小時 D. 10點至14點,汽車勻速行駛

查看答案和解析>>

同步練習(xí)冊答案