已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,OP=6,P1與P關(guān)于OB對(duì)稱,P2與P關(guān)于OA對(duì)稱,則△P1OP2的周長(zhǎng)為
18
18
;若OA上有一動(dòng)點(diǎn)M,OB上有一動(dòng)點(diǎn)N,則△PMN的最小周長(zhǎng)為
6
6
分析:(1)根據(jù)軸對(duì)稱的性質(zhì),結(jié)合等邊三角形的判定求解;
(2)設(shè)點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)為C,關(guān)于OB的對(duì)稱點(diǎn)為D,當(dāng)點(diǎn)M、N在CD上時(shí),△PMN的周長(zhǎng)最。
解答:解:(1)∵P為∠AOB內(nèi)部一點(diǎn),點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)分別為P1、P2,
∴OP=OP1=OP2=6,且∠P1OP2=2∠AOB=60°,
∴故△OP1P2是等邊三角形.
∴△P1OP2的周長(zhǎng)=3×6=18;
(2)分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OP、OC、OD、PM、PN.
∵點(diǎn)P關(guān)于OA的對(duì)稱點(diǎn)為C,關(guān)于OB的對(duì)稱點(diǎn)為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點(diǎn)P關(guān)于OB的對(duì)稱點(diǎn)為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=6.
∴△PMN的周長(zhǎng)的最小值=PM+MN+PN=CM+MN+DN≥CD=6.
故答案為:18;6.
點(diǎn)評(píng):此題考查了軸對(duì)稱的性質(zhì),同時(shí)考查軸對(duì)稱--最短路線問題,并綜合運(yùn)用了等邊三角形的知識(shí).注意掌握對(duì)應(yīng)點(diǎn)的連線與對(duì)稱軸的位置關(guān)系是互相垂直,對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分,對(duì)稱軸上的任何一點(diǎn)到兩個(gè)對(duì)應(yīng)點(diǎn)之間的距離相等,對(duì)應(yīng)的角、線段都相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,P′與P關(guān)于OA對(duì)稱,P″與P關(guān)于OB對(duì)稱,則△OP′P″一定是一個(gè)
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB=30°,點(diǎn)P在∠AOB內(nèi)部,P1與P關(guān)于OB對(duì)稱,P2與P關(guān)于OA對(duì)稱,則P1,O,P2三點(diǎn)構(gòu)成的三角形是
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB=30°,將∠AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°后得到∠EOF,則∠EOF=
30°
30°
.(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,E,O,A三點(diǎn)共線,OB平分∠AOC,∠DOC=2∠EOD,已知∠AOB=30°,則∠EOD的度數(shù)為
40°
40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,P1與P關(guān)于0B對(duì)稱,P2與P關(guān)于OA對(duì)稱,則∠P1PP2的度數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案