【題目】如圖,已知數(shù)軸上原點(diǎn)為0,點(diǎn)B表示的數(shù)為2,A在B的右邊,且A與B的距離為5,,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)寫(xiě)出數(shù)軸上點(diǎn)A表示的數(shù) ,點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示),點(diǎn)Q表示的數(shù)(用含t的代數(shù)式表示);
(2)問(wèn)點(diǎn)P與點(diǎn)Q何時(shí)到點(diǎn)O的距離相等?
(3)若點(diǎn)D是數(shù)軸上一點(diǎn),點(diǎn)D表示的數(shù)是x,是否存在x,使得?如果存在,請(qǐng)直接寫(xiě)出x的值;如果不存在,說(shuō)明理由.
【答案】(1)3,-2+3t,3-4t;(2)當(dāng)t=1或時(shí),點(diǎn)P與點(diǎn)Q到點(diǎn)O的距離相等;(3)x的值為-3或4.
【解析】
(1)根據(jù)數(shù)軸的性質(zhì)即可求出點(diǎn)A、P、Q表示的數(shù);
(2)根據(jù)題意可分P、Q相遇前后與相遇時(shí)分別求解即可;
(3)分點(diǎn)D在-2左邊、在-2與3之間及在3的右邊分別求解即可.
(1)寫(xiě)出數(shù)軸上點(diǎn)A表示的數(shù)為-2+5=3,
點(diǎn)P表示的數(shù)為-2+3t,
點(diǎn)Q表示的數(shù)為3-4t;
(2)①P、Q相遇前后,依題意得(-2+3t)+(3-4t)=0
解得t=1,
②P、Q相遇時(shí),依題意得(-2+3t)=(3-4t)
解得t=
故當(dāng)t=1或時(shí),點(diǎn)P與點(diǎn)Q到點(diǎn)O的距離相等;
(3)①當(dāng)點(diǎn)D在-2左邊
∴
解得x=-3,
②當(dāng)點(diǎn)D在-2與3之間
∴=5≠7,
故無(wú)解;
③當(dāng)點(diǎn)D在3的右邊
解得x=4
綜上,x的值為-3或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D、E分別在AC、BC上,且CD=BE,
(1)求證:△ABE≌△BCD;
(2)求出∠AFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門(mén)規(guī)定學(xué)生每天參加戶(hù)外活動(dòng)的平均時(shí)間不少于1小時(shí).為了解學(xué)生參加戶(hù)外活動(dòng)的情況,對(duì)部分學(xué)生參加戶(hù)外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?
(2)求戶(hù)外活動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)充頻數(shù)分布直方圖;
(3)求表示戶(hù)外活動(dòng)時(shí)間1小時(shí)的扇形圓心角的度數(shù);
(4)本次調(diào)查中學(xué)生參加戶(hù)外活動(dòng)的平均時(shí)間是否符合要求?戶(hù)外活動(dòng)時(shí)間的眾數(shù)和中位數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E為AB邊的中點(diǎn),以BE為邊作等邊△BDE,連接AD、CD.
(1)求證:AD=CD;
(2)①畫(huà)圖:在AC邊上找一點(diǎn)H,使得BH+EH最小(要求:寫(xiě)出作圖過(guò)程并畫(huà)出圖形,不用說(shuō)明作圖依據(jù));
②當(dāng)BC=2時(shí),求出BH+EH的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,⊿ABC的頂點(diǎn)在格點(diǎn)上。 且A(1,-4),B(5,-4),C(4,-1)
【1】畫(huà)出⊿ABC;
【1】求出⊿ABC 的面積;
【1】若把⊿ABC向上平移2個(gè)單位長(zhǎng)度,再向左平移4個(gè)單位長(zhǎng)度得到⊿BC,在圖中畫(huà)出⊿BC,并寫(xiě)出B的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的半徑為5,弦BC=8,點(diǎn)A是⊙O上一點(diǎn),且AB=AC,直線(xiàn)AO與BC交于點(diǎn)D,則AD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)計(jì)算:(3﹣π)0+(﹣ )﹣2+ ﹣2|sin45°﹣1|;
(2)先化簡(jiǎn),再求值: ,其中實(shí)數(shù)m使關(guān)于x的一元二次方程x2﹣4x﹣m=0有兩個(gè)相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,點(diǎn)在線(xiàn)段上,圖中有三條線(xiàn)段、和,若其中一條線(xiàn)段的長(zhǎng)度是另外一條線(xiàn)段長(zhǎng)度的倍,則稱(chēng)點(diǎn)是線(xiàn)段的“巧點(diǎn)”.
(1)填空:線(xiàn)段的中點(diǎn) 這條線(xiàn)段的巧點(diǎn)(填“是”或“不是”或“不確定是”)
(問(wèn)題解決)
(2)如圖二,點(diǎn)和在數(shù)軸上表示的數(shù)分別是和,點(diǎn)是線(xiàn)段的巧點(diǎn),求點(diǎn)在數(shù)軸上表示的數(shù)。
(應(yīng)用拓展)
(3)在(2)的條件下,動(dòng)點(diǎn)從點(diǎn)處,以每秒個(gè)單位的速度沿向點(diǎn)勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位的速度沿向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)中點(diǎn)時(shí),兩個(gè)點(diǎn)運(yùn)動(dòng)同時(shí)停止,當(dāng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某園藝公司對(duì)一塊直角三角形的花圃進(jìn)行改造,測(cè)得兩直角邊長(zhǎng)為6m、8m.現(xiàn)要將其擴(kuò)建成等腰三角形,且擴(kuò)充部分是以8m為直角邊的直角三角形.求擴(kuò)建后的等腰三角形花圃的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com