【題目】已知:如圖1,平面直角坐標系xOy中,四邊形OABC是矩形,點A,C的坐標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線y=-x+b交折線O-A-B于點E.
(1)在點D運動的過程中,若△ODE的面積為S,求S與b的函數關系式,并寫出自變量的取值范圍;
(2)如圖2,當點E在線段OA上時,矩形OABC關于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;
(3)問題(2)中的四邊形DMEN中,ME的長為____________.
科目:初中數學 來源: 題型:
【題目】如圖,將-2,-1,0,1,2,3,4,5,6,7這10個數分別填寫在五角星中每兩條線的交點處(每個交點處只填寫一個數),將每一條線上的4個數相加,共得5個數,設為a1,a2,a3,a4,a5.
(1)求(a1+a2+a3+a4+a5)的值;
(2)交換其中任何兩位數的位置后,(a1+a2+a3+a4+a5)的值是否改變?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在△ABC中,AB=AC。
(1)若D為AC的中點,BD把三角形的周長分為24cm和30cm兩部分,求△ABC三邊的長;
(2)若D為AC上一點,試說明AC>(BD+DC)。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調查,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數分布直方圖和扇形統(tǒng)計圖(均不完整),請根據圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數為 度;
(3)請將頻數分布直方圖補充完整;
(4)如果全市有6000名初二學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4, 的平分線交DC于點E.若點P,Q分別是AD和AE上的動點,則的最小值是( 。
A. 2 B. 4 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一個棱長為的正方體的每個面等分成個小正方形,然后沿每個面正中心的一個正方形向里挖空(相當于挖去個小正方體),所得到的幾何體的表面積是( )
A. 78 B. 72 C. 54 D. 48
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點M(-3,m)是函數y=x+1與反比例函數(k≠0)的圖象的一個交點.
(1)求反比例函數表達式;
(2)點P是x軸正半軸上的一個動點,設OP=a(a≠2),過點P作垂直于x軸的直線,分別交一次函數,反比例函數的圖象于點A,B,過OP的中點Q作x軸的垂線,交反比例函數的圖象于點C,△ABC′與△ABC關于直線AB對稱.
①當a=4時,求△ABC′的面積;
②若△AMC與△AMC′的面積相等,求a的值 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,在平面直角坐標系內,點A的坐標為(0,24),經過原點的直線l1與經過點A的直線l2相交于點B,點B坐標為(18,6).
(1)求直線l1 , l2的表達式;
(2)點C為線段OB上一動點(點C不與點O,B重合),作CD∥y軸交直線l2于點D,過點C,D分別向y軸作垂線,垂足分別為F,E,得到矩形CDEF.
①設點C的縱坐標為a,求點D的坐標(用含a的代數式表示)
②若矩形CDEF的面積為60,請直接寫出此時點C的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com