【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于點D,BE平分∠ABC,且BE⊥AC于點E,與CD交于F,H是BC邊的中點,連接DH與BE交于點G,則下列結(jié)論:
①BF=AC;②∠A=∠DGE;③CE<BG;④S△ADC=S四邊形CEGH;⑤DGAE=DCEF中,正確結(jié)論的個數(shù)是( )
A.2B.3C.4D.5
【答案】C
【解析】
證明△BDF≌△CDA可判斷①;
由利用三角形的外角的性質(zhì)及四邊形的內(nèi)角和定理可判斷②;
連接利用DH是BC的垂直平分線,從而可判斷③;
過G作GJ⊥AB于J,過F作FMBC于M,連接GM,設(shè) 分別計算三角形ADC的面積和四邊形CEGH的面積可判斷④;
由△BDF∽△CEF,可判斷⑤.
解:∵CD⊥AB,BF⊥AC,
∴∠BEC=∠BDC=∠ADC=90°,
∵∠ABC=45°,
∴∠DCB=45°=∠ABC,
∴BD=DC,
∵∠BDC=∠CEF=90°,∠DFB=∠EFC,
∴由三角形內(nèi)角和定理得:∠DBF=∠ACD,
∵在△BDF和△CDA中,
∴△BDF≌△CDA(ASA),
∴BF=AC,∠BFD=∠A,∴①正確;
∵∠DFB=∠FBC+∠FCB=∠FBC+45°,∠DGF=∠GBD+45°,∠FBC=∠GBD,
∴∠DFG=∠DGF,
∴∠A=∠DGE,故②正確,
如圖,連接
∵∠ABC=45°,∠BDC=90°,
∴△BDC是等腰直角三角形,
∵H是BC邊的中點,
∴DH垂直平分BC,
故③正確;
過G作GJ⊥AB于J,過F作FMBC于M,連接GM,
平分
四邊形DGMF是菱形,
設(shè)
則
四邊形CFGH的面積=梯形GHMF的面積+的面積
S△ADCS四邊形CEGH,故④錯誤.
∵△BDF∽△CEF,
∴,
∵BD=DC,CE=AE,DF=DG,
∴
∴DGAE=DCEF,故⑤正確.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在C處看到西北方向上有一涼亭A,北偏東°的方向上有一棵大樹B,已知涼亭A在大樹B的正西方向,若BC=米,則A、B兩點相距 ( )
A.米B.米
C.米D.米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1(m為常數(shù))交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.
①拋物線y=-x2+2x+m+1與直線y=m+2有且只有一個交點;
②若點M(-2,y1)、點N(,y2)、點P(2,y3)在該函數(shù)圖象上,則y1<y2<y3;
③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為y=-(x+1)2+m;
④點A關(guān)于直線x=1的對稱點為C,點D、E分別在x軸和y軸上,當m=1時,四邊形BCDE周長的最小值為.
其中正確判斷有( )
A.①②③④B.②③④C.①③④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖像經(jīng)過點A(4,4),B(5,0)和原點O,點P為拋物線上的一個動點,過點P作x軸的垂線,垂足為D(m,0)(m>0),并與直線OA交于點C.
(1)求出拋物線的函數(shù)表達式;
(2)連接OP,當S△OPC=S△OCD時,求出此時的點P坐標;
(3)在直線OA上取一點M,使得以P、C、M為頂點的三角形與△OCD全等,求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個實數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一段6000米的道路由甲乙兩個工程隊負責(zé)完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用10天.
(1)求甲、乙兩工程隊每天各完成多少米?
(2)如果甲工程隊每天需工程費7000元,乙工程隊每天需工程費5000元,若甲隊先單獨工作若干天,再由甲乙兩工程隊合作完成剩余的任務(wù),支付工程隊總費用不超過79000元,則兩工程隊最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)(≠)的圖象與反比例函數(shù) ()的圖象交于A、B兩點,與軸交于C點,點A的坐標為(,6),點C的坐標為(-2,0),且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標;
(3)利用圖象求不等式:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是的斜邊AB上一點,以AE為直徑的與邊BC相切于點D,交邊AC于點F,連結(jié)AD.
(1)求證:AD平分.
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長分別為10cm和4cm的矩形紙片沿著虛線剪成兩個全等的梯形紙片.裁剪線與矩形較長邊所夾的銳角是45°,則梯形紙片中較短的底邊長為( 。
A.2cmB.2.5cmC.3cmD.3.5cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com