【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=(﹣1)i=﹣i,i4=(i22=(﹣1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4ni=(i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值為( 。

A. 0 B. i C. ﹣1 D. 1

【答案】B

【解析】

根據(jù)新定義新運算找規(guī)律. i4n=1,由于2012=4×503,

解:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)ykxb的圖像經(jīng)過點(-2,4),且與正比例函數(shù)y=2x的圖像平行.

(1) 求一次函數(shù)ykxb的解析式;

(2) 求一次函數(shù)ykxb的圖像與坐標軸所圍成的三角形的面積;

(3) A(a,y1),B(ab,y2)為一次函數(shù)ykxb的圖像上兩個點,試比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育中考前,抽樣調(diào)查了九年級學生的“1分鐘跳繩”成績,并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補全頻數(shù)分布直方圖;
(2)扇形圖中m=;
(3)若“1分鐘跳繩”成績大于或等于140次為優(yōu)秀,則估計全市九年級5900名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OEAB于O,若BOD=40°,則不正確的結(jié)論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,G為三角形外一點,且△GBC為等邊三角形.

(1)求證:直線AG垂直平分BC;

(2)以AB為一邊作等邊△ABE(如圖2),連接EG、EC,試判斷△EGC是否構(gòu)成直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中有三個點A(1,﹣1)、B(﹣1,﹣1)、C(0,1),點P(0,2)關(guān)于A的對稱點為P1,P1關(guān)于B的對稱點為P2,P2關(guān)于C的對稱點為P3,按此規(guī)律繼續(xù)以A、B、C為對稱中心重復前面的操作,依次得到P4、P5、P6,…,則點P2018的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題.

我們知道方程2x+3y=12有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù)) 則有0<x<6.又為正整數(shù),則 為正整數(shù).

23互質(zhì),可知:x3的倍數(shù),從而x=3,代入=2.

∴2x+3y=12的正整數(shù)解為

問題:

(1)請你寫出方程2x+y=5的一組正整數(shù)解:_____;

(2)若 為自然數(shù),則滿足條件的整數(shù)x值有_____

A、2 B、3 C、4 D、5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABDFD+B=180°

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象交y軸于點A,交x軸于點B,點F在射線BA上,過點Fx軸的垂線,點D為垂足,

⑴若OD=6,求F點的坐標;

(2)OD=12,M在線段FD上,M的縱坐標為m,連接BM,用含有m的代數(shù)式表示BMF的面積.

查看答案和解析>>

同步練習冊答案