【題目】如圖,在△ABC中,∠ABC=100°,∠ACB=40°,∠ABC的平分線BD交AC于點D,∠ACB的平分線CP交BD于點D.
(1)BD與AC的位置關系是 .
(2)求∠BPC的度數(shù).
【答案】
(1)互相垂直
(2)解:∵PC平分∠ACB,∠ACB=40°,
∴∠BCP= ∠ACB=20°,
∴∠BPC=180°﹣∠PBC﹣∠BCP=180°﹣50°﹣20°=110°
【解析】解:(1)∵∠ABC=100°,BD平分∠ABC,
∴∠DBC= ∠ABC=50°,
∴∠BDC=180°﹣∠DBC﹣∠BCD=90°,
∴BD⊥AC.
(2)∵PC平分∠ACB,∠ACB=40°,
∴∠BCP= ∠ACB=20°,
∴∠BPC=180°﹣∠PBC﹣∠BCP=180°﹣50°﹣20°=110°
所以答案是:(1)互相垂直;(2)110°.
【考點精析】根據(jù)題目的已知條件,利用三角形的內角和外角的相關知識可以得到問題的答案,需要掌握三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角.
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b,當x=2時y的值是﹣1,當x=﹣1時y的值是5.
(1)求此一次函數(shù)的解析式;
(2)若點P(m,n)是此函數(shù)圖象上的一點,﹣3≤m≤2,求n的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點A(3,3 )是正比例函數(shù)y=x上一點,點M(m,0)與點N(0,n)分別在x軸與y軸上,且∠MAN=90°.
(1)如圖1,當N點與原點O重合,求M點的坐標;
(2)如圖2,已知m,n都為正數(shù),連接MN,若MN=,求△MON的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提高課堂效率,引導學生積極參與課堂教學,鼓勵學生大膽發(fā)言,勇于發(fā)表自己的觀點促進自主前提下的小組合作學習,張老師調查統(tǒng)計了一節(jié)課學生回答問題的次數(shù)(如圖所示)這次調查統(tǒng)計的數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.眾數(shù)2,中位數(shù)3
B.眾數(shù)2,中位數(shù)2.5
C.眾數(shù)3,中位數(shù)2
D.眾數(shù)4,中位數(shù)3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A,B兩種型號的電風扇的銷售單價;
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上三點A,O,B表示的數(shù)分別為﹣3,0,1,點P為數(shù)軸上任意一點,其表示的數(shù)為x.
(1)如果點P到點A,點B的距離相等,那么x= ;
(2)當x= 時,點P到點A,點B的距離之和是6;
(3)若點P到點A,點B的距離之和最小,則x的取值范圍是 ;
(4)在數(shù)軸上,點M,N表示的數(shù)分別為x1 , x2 , 我們把x1 , x2之差的絕對值叫做點M,N之間的距離,即MN=|x1﹣x2|.若點P以每秒3個單位長度的速度從點O沿著數(shù)軸的負方向運動時,點E以每秒1個單位長度的速度從點A沿著數(shù)軸的負方向運動、點F以每秒4個單位長度的速度從點B沿著數(shù)軸的負方向運動,且三個點同時出發(fā),那么運動 秒時,點P到點E,點F的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d=計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d====.
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在開展“學雷鋒社會實踐”活動中,某校為了解全校1200名學生參加活動的情況,隨機調查了50名學生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計圖如圖.
(Ⅰ)求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)樣本數(shù)據(jù),估算該校1200名學生共參加了多少次活動?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com