【題目】已知等邊△ABC的邊長(zhǎng)為,D是AB上的動(dòng)點(diǎn),過(guò)D作DE⊥AC于點(diǎn)E,過(guò)E作EF⊥BC于點(diǎn)F,過(guò)F作FG⊥AB于點(diǎn)G.當(dāng)G與D重合時(shí),AD的長(zhǎng)是( )
A. B. C. D.
【答案】C
【解析】
設(shè)BD=x,根據(jù)等邊三角形的性質(zhì)得到∠A=∠B=∠C=60°,由垂直的定義得到∠BDF=∠DEA=∠EFC=90°,解直角三角形即可得到結(jié)論.
如圖,設(shè)BD=x,
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°,
∵DE⊥AC于點(diǎn)E,EF⊥BC于點(diǎn)F,FG⊥AB,
∴∠BDF=∠DEA=∠EFC=90°,
∴∠ADE=∠CEF=∠BFD=30°,
∴BF=2BD=2x,
∴CF=18-2x,
∴CE=2CF=36-4x,
∴AE=18-CE=4x-18,
∴AD=2AE=8x-36,
∵AD+BD=AB,
∴8x-36+x=18,
∴x=6,
∴AD=8x-36=48-36=12,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥研究所開(kāi)發(fā)了一種新藥,在試驗(yàn)效果時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,服藥后血液中的含藥量逐漸增多,一段時(shí)間后達(dá)到最大值,接著藥量逐步衰減直至血液中含藥量為0,每毫升血液中含藥量(微克)隨時(shí)間(小時(shí))的變化如圖所示,下列說(shuō)法:(1)2小時(shí)血液中含藥量最高,達(dá)每毫升6微克.(2)每毫升血液中含藥量不低于4微克的時(shí)間持續(xù)達(dá)到了6小時(shí).(3)如果一病人下午6:00按規(guī)定劑量服此藥,那么,第二天中午12:00,血液中不再含有該藥,其中正確說(shuō)法的個(gè)數(shù)是()
A. 0B. 1
C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷售該水果第x(天)的利潤(rùn)為y(元),求y與x(1≤x<15)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷售利潤(rùn)最大?
時(shí)間x(天) | 1≤x<9 | 9≤x<15 | x≥15 |
售價(jià)(元/斤) | 第1次降價(jià)后的價(jià)格 | 第2次降價(jià)后的價(jià)格 | |
銷量(斤) | 80﹣3x | 120﹣x | |
儲(chǔ)存和損耗費(fèi)用(元) | 40+3x | 3x2﹣64x+400 |
(3)在(2)的條件下,若要使第15天的利潤(rùn)比(2)中最大利潤(rùn)最多少127.5元,則第15天在第14天的價(jià)格基礎(chǔ)上最多可降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將線段OB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到線段OC,繼續(xù)旋轉(zhuǎn)α(0°<α<120°)得到線段OD,連接CD.
(1)如圖,連接BD,則∠BDC的大小=_____(度);
(2)將線段OB放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(﹣6,0),以OB為斜邊作Rt△OBE,使∠OBE=∠OCD,且點(diǎn)E在第三象限,若∠CED=90°,則α的大小=_____(度),點(diǎn)D的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:中,,求證:,下面寫出可運(yùn)用反證法證明這個(gè)命題的四個(gè)步驟:
①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個(gè)步驟正確的順序應(yīng)是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角中,已知,邊的垂直平分線交于點(diǎn),交于點(diǎn),且,,則的長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣+bx+c過(guò)點(diǎn)A(3,0),B(0,2).M(m,0)為線段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過(guò)點(diǎn)M作垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N.
(1)求直線AB的解析式和拋物線的解析式;
(2)如果點(diǎn)P是MN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);
(3)在對(duì)稱軸的左側(cè)是否存在點(diǎn)M使四邊形OMPB的面積最大,如果存在求點(diǎn)M的坐標(biāo);不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ACB和△ECD均為等腰直角三角形,∠ACB=∠ECD=90°.
(1)如圖1,點(diǎn)E在BC上,則線段AE和BD有怎樣的關(guān)系?請(qǐng)直接寫出結(jié)論(不需證明);
(2)若將△DCE繞點(diǎn)C旋轉(zhuǎn)一定的角度得圖2,則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)當(dāng)△DCE旋轉(zhuǎn)到使∠ADC=90°時(shí),若AC=5,CD=3,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為給同學(xué)們創(chuàng)造更好的讀書條件,學(xué)校準(zhǔn)備新建一個(gè)長(zhǎng)度為L的度數(shù)長(zhǎng)廊,并準(zhǔn)備用若干塊帶有花紋和沒(méi)有花紋的兩種規(guī)格、大小相同的正方形地面磚搭配在一起,按如圖所示的規(guī)律拼成圖案鋪滿長(zhǎng)廊,已知每個(gè)小正方形地面磚的邊長(zhǎng)均為0.6m.
(1)按圖示規(guī)律,第一圖案的長(zhǎng)度L1= m;第二個(gè)圖案的長(zhǎng)度L2= m.
(2)請(qǐng)用代數(shù)式表示帶有花紋的地面磚塊數(shù)n與走廊的長(zhǎng)度Ln之間的關(guān)系.
(3)當(dāng)走廊的長(zhǎng)度L為36.6m時(shí),請(qǐng)計(jì)算出所需帶有花紋圖案的瓷磚的塊數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com