【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上,向右,向下,向右的方向不斷地移動,每移動一個單位,得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么點A2020的坐標(biāo)為________________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的頂點E在邊AB上,D,F兩點分別在邊AC,BC上,且,將矩形CDEF以每秒1個單位長度的速度沿射線CB方向勻速運動,當(dāng)點C與點B重合時停止運動,設(shè)運動時間為t秒,矩形CDEF與△ABC重疊部分的面積為S,則反映S與t的函數(shù)關(guān)系的圖象為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的高, 直角的頂點是射線上一動點, 交直線于點所在直線交直線于點F.
(1)判斷△ABC的形狀,并說明理由;
(2)若G為AE的中點,求tan∠EAF的值;
(3)在點E的運動過程中,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,與x軸交于兩點A,B(點A在點B的左側(cè)),與y軸交于點C.
(Ⅰ)求點A,B和點C的坐標(biāo);
(Ⅱ)已知P是線段上的一個動點.
①若軸,交拋物線于點Q,當(dāng)取最大值時,求點P的坐標(biāo);
②求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,直線與反比例函數(shù)在第一象限的圖象交于點、點,其中點的坐標(biāo)為(1,n)
(1)求反比例函數(shù)解析式;
(2) 連接, 求的面積;
(3)根據(jù)圖象,直接寫出當(dāng)時不等式的解集
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,以AB為直徑的O交BC于D,點E為AC的中點,連接DE.
(1)求證:DE是O的切線;
(2)若∠BAD=50°,AC=6,CD=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知拋物線與x軸交于A、B兩點,與y軸負(fù)方向交于C點,且.
(1)試求出拋物線的解析式;
(2)E為直線上.動點,F為拋物線對稱軸上一點,當(dāng)F點在對稱軸上何處時,四邊形ACFE的周長最短,并求出此時四邊形的周長;
(3)如圖(2),為x軸上一點,拋物線上x軸的上方是否存在點P,使得線段AP與直線CD相交且它們的夾角為45°,若存在這樣的P點,請求出P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE.
(1)求證:DE是⊙O的切線;
(2)若CD=6cm,DE=5cm,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,E、F分別是邊CD、AD上動點,AE和BF交于點G.
(1)如圖(1),若E為邊CD的中點,AF=2FD,求AG的長.
(2)如圖(2),若點F在AD上從A向D運動,點E在DC上從D向C運動,兩點同時出發(fā),同時到達(dá)各自終點,求在運動過程中,點G運動的路徑長.
(3)如圖(3),若E、F分別是邊CD、AD上的中點,BD與AE交于點H,求∠FBD的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com