【題目】如圖,正方形ABCD的邊長為6E、F分別是邊CD、AD上動點,AEBF交于點G

1)如圖(1),若E為邊CD的中點,AF=2FD,求AG的長.

2)如圖(2),若點FAD上從AD運動,點EDC上從DC運動,兩點同時出發(fā),同時到達(dá)各自終點,求在運動過程中,點G運動的路徑長.

3)如圖(3),若E、F分別是邊CD、AD上的中點,BDAE交于點H,求∠FBD的正切值.

【答案】1;(2;(3

【解析】

1)根據(jù)正方形的邊長為6,易知DE = CE = 3;由已知AF=2FD可得AF = 4;從而用AAS證明△ADE≌△MCEAAS),進(jìn)而求出AD = MC = 6;通過證明△AGF∽△MBG,再通過相似三角形的性質(zhì)得,運用勾股定理計算出AM=,最后得出AG;

2)動點問題,通過證明△ABF≌△DAE(HL),進(jìn)而得出AFG =∠AED,∠DAE =∠ABF等量關(guān)系,易推論出∠AFG+∠DAE=90° ,以證明∠AGB=90°,從而推出G點運動的實質(zhì)是在以O為圓心,OA為半徑的圓上運動了圓周,運用扇形的弧長公式計算即可得G運動路徑的長度;

3)通過做輔助線過點FFNBD于點D,構(gòu)建出Rt△BNFRt△DNF,再根據(jù)已知條件EF分別是邊CD、AD上的中點,解直角三角形分別求出直角邊NF = ND,BN=BD-DN,最后把所求數(shù)據(jù)代入求解即可.

解:(1)延長AEBC延長線于M,

在正方形ABCD中,∠DAE =∠M

∵EDC的中點,AF=2FD,正方形邊長為6

∴DE = CE = 3,AF = 4

△ADE△MCE

∴△ADE≌△MCEAAS

∴AD = MC = 6

△AGF△MBG

∴△AGF∽△MBG

AM=

∴AG.

2)設(shè)AB的中點為點O,則OA =AB = 3,

由題意知:AF=DEAB=AD

∴△ABF≌△DAE(HL)

∴∠AFG =∠AED,∠DAE =∠ABF

∵∠AFG +∠ABF=90°,∠DAE +∠AED=90°

∴∠AFG+∠DAE=90°

∴∠AGB=90°

G 在以O為圓心,OA為半徑的圓上運動了圓周

G運動的路徑長 = π = π;

3)過點FFNBD于點D,據(jù)題意知∠FDN=45°,BD =

E、F分別是邊CD、AD上的中點

DF = ×6 = 3

∴在Rt△DNF,FN = DN = sin45°DF

∴BN = BD–DN =

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上,向右,向下,向右的方向不斷地移動,每移動一個單位,得到點A10,1),A21,1),A310),A42,0),那么點A2020的坐標(biāo)為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC的周長為7,∠AOC60°,以O為原點,OC所在直線為x軸建立直角坐標(biāo)系,函數(shù)x0)的圖像經(jīng)過OABC的頂點ABC的中點M,則k的值為(

A.B.12C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設(shè)置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學(xué)生選一個主題參與.為了解活動開展情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)本次隨機(jī)調(diào)查的學(xué)生人數(shù)是 人;

2)請你補(bǔ)全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角等于 度;

4)小明和小華各自隨機(jī)參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11③ 92-62=3×11;;根據(jù)上面等式的規(guī)律:

1)寫出第6個和第n個等式;

2)證明你寫的第n個等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一居民樓AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α38°.從距離樓底B2米的P處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β28°.已知樹高EF8米,求塔CD的高度.(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5cos28°≈0.9,tan28°≈0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的高為,母線為,且,圓錐的側(cè)面展開圖為如圖所示的扇形.將扇形沿折疊,使點恰好落在上的點,則弧長與圓錐的底面周長的比值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對角線AC于點E,F,連接BE,DF

1)求證:AE=CF

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余活動情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計,現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中--項),并據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:

(1) ,直接補(bǔ)全條形統(tǒng)計圖;

(2)若該校共有學(xué)生名,試估計該校喜愛看課外書的學(xué)生人數(shù);

(3)若被調(diào)查喜愛體育活動的名學(xué)生中有名男生和名女生,現(xiàn)從這名學(xué)生中任意抽取名,請用列表或畫樹狀圖的方法求恰好抽到名男生的概率.

查看答案和解析>>

同步練習(xí)冊答案