【題目】按圖填空,并注明理由.
已知:如圖,∠1=∠2,∠3=∠E.
求證:AD∥BE.
證明:∵∠1=∠2 (已知)
∴∥
()
∴∠E=∠
()
又∵∠E=∠3 ( 已知 )
∴∠3=∠
()
∴AD∥BE.
()
【答案】BD;CE;內(nèi)錯角相等,兩直線平行;4;兩直線平行,內(nèi)錯角相等;4;等量代換;內(nèi)錯角相等,兩直線平行
【解析】證明:∵∠1=∠2 (已知)
∴EC∥DB
( (內(nèi)錯角相等,兩直線平行 )
∴∠E=∠4
( 兩直線平行,內(nèi)錯角相等 )
又∵∠E=∠3 ( 已知 )
∴∠3=∠4
( 等量代換 )
∴AD∥BE.
( 內(nèi)錯角相等,兩直線平行 ).
故答案是:BD;CE;(內(nèi)錯角相等,兩直線平行);4;(兩直線平行,內(nèi)錯角相等);4(等量代換);(內(nèi)錯角相等,兩直線平行).
【考點精析】本題主要考查了平行線的判定與性質(zhì)的相關(guān)知識點,需要掌握由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當x>1時,y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班同學進行數(shù)學測驗,將所得成績(得分取整數(shù))進行整理分成五組,并繪制成頻數(shù)直方圖(如圖),請結(jié)合直方圖提供的信息,回答下列問題:
(1)該班共有多少名學生參加這次測驗?
(2)求60.5~70.5這一分數(shù)段的頻數(shù)是多少?
(3)若80分以上為優(yōu)秀,則該班的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富同學們的課余生活,某學校舉行“親近大自然”戶外活動,現(xiàn)隨機抽取了部分學生進行主題為“你最想去的景點是?”的問卷調(diào)查,要求學生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個景點中選擇一項,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.
請解答下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)若該學校共有3600名學生,試估計該校最想去濕地公園的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點D,BD的延長線交AC于點E.
(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學化簡(x﹣2)2﹣(x+1)(x﹣1)出現(xiàn)了錯誤,解答過程如下:
原式=x2+4﹣(x2﹣1)(第一步)
=x2+4﹣x2+1(第二步)
=5.(第三步)
(1)該同學的解答過程從第 步開始出錯,錯誤原因是 ;
(2)寫出此題正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A﹙﹣2,﹣5﹚C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y=kx+b的表達式;
(2)連接OA,OC.求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為( )
①a=,b=,c= ②a=6,∠A=45°; ③∠A=32°,∠B=58°;
④a=7,b=24,c=25 ⑤a=2,b=2,c=4.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com