如圖,在平面直角坐標系中,△ABC為等腰三角形,AB=AC,將△AOC沿直線AC折疊,點O落在直線AD上的點E處,直線AD的解析式為y=-
3
4
x+6
,則
(1)AO=______;AD=______;OC=______;
(2)動點P以每秒1個單位的速度從點B出發(fā),沿著x軸正方向勻速運動,點Q是射線CE上的點,且∠PAQ=∠BAC,設P運動時間為t秒,求△POQ的面積S與t之間的函數(shù)關系式;
(3)在(2)的條件下,直線CE上是否存在一點Q,使以點Q、A、D、P為頂點的四邊形是平等四邊形?若存在,求出t值及Q點坐標;若不存在,說明理由.
(1)∵A、D是直線y=-
3
4
x+6上的點,
∴A(0,6),D(8,0),
∴AO=6,OD=8;
∵△AOD是直角三角形,
∴AD=
AO2+OD2
=
62+82
=10,
∵△ACE由△ACO反折而成,
∴AE=AO=6,CE⊥AD,
∴DE=QD-AE=10-6=4,
∵∠ADO=∠ADO,∠AOD=∠CED,
∴△AOD△CED,
AD
CD
=
OD
ED
10
CD
=
8
4
,解得CD=5,
∴OC=OD-CD=8-5=3.

(2)當P在線段BO上時,即0<t<3時;
∵∠BAC=∠PAQ,
∴∠BAP=∠CAQ=∠BAC-∠PAC=∠PAQ-∠PAC;
又∵∠ABP=∠ACQ=∠ACO,且AB=AC,
∴△ABP≌△ACQ,得BP=CQ=t,OP=3-t;
∴△POQ的面積為:S=
1
2
OP•CQ•sin∠ECD=
1
2
(3-t)×
4
5
t,即S=-
2
5
t2+
6
5
t;
當P在x軸正半軸上時,即t>3時;
同①可得:BP=CQ=t,OP=t-3;
∴S=
1
2
OP•CQ•sin∠ECD=
1
2
(t-3)×
4
5
t,
即S=
2
5
t2-
6
5
t;
綜上可知:S=
-
2
5
t2+
6
5
t(0<t<3)
2
5
t2-
6
5
t(t>3)
;

(3)分兩種情況:
①0<t<3時,顯然不存在以AD為邊的情況,那么只考慮以AD為對角線的情況;
此時P(t-3,0),取易知AD的中點為:(4,3);
∵平行四邊形中,以AD、PQ為對角線,
∴AD的中點也是PQ的中點;
∴Q(11-t,6);
∵直線CE:y=
4
3
x-4,代入Q點坐標得:
4
3
(11-t)-4=6,解得t=
7
2
;即BP=CQ=
7
2

∴Q(
3
2
×
3
5
+3,
3
2
×
4
5
),即Q(
51
10
,
14
5
);
②t>3時,顯然不存在以AD為對角線的情況,那么只考慮以AD為邊的情況;
此時PFDP,即F點縱坐標為6,由①得,此時F(
15
2
,6);
即DP=AF=
15
2
,BP=BD+DP=11+
15
2
=
37
2
,即t=
37
2
;
此時CQ=BP=
37
2
,同①可求得:Q(
141
10
74
5
).
綜上可知:存在符合條件的F點,此時的t值和Q點坐標分別為:t=
3
2
,Q(
51
10
,
14
5
)或t=
37
2
,Q(
141
10
,
74
5
).
故答案為:10,6,3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點A與B的坐標分別為(4,0),(0,2),求:
①直線AB的解析式;
②過點C(2,0)的直線(與x軸不重合)截坐標軸于點P,若截得的小三角形△PCO與△AOB相似,試求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知,如圖點A(1,1),B(2,-3),點P為x軸上一點,當|PA-PB|最大時,點P的坐標為( 。
A.(
1
2
,0)
B.(
5
4
,0)
C.(-
1
2
,0)
D.(1,0)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(cm)與燃燒時間x(h)的關系如圖所示.請根據(jù)圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是______,從點燃到燃盡所用的時間分別是______;
(2)分別求甲、乙兩根蠟燭燃燒時y與x之間的函數(shù)關系式;
(3)當x為何值時,甲、乙兩根蠟燭在燃燒過程中的高度相等.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一報刊銷售亭從報社訂購某晚報的價格是每份0.7元,銷售價是每份1元,賣不掉的報紙還可以以0.2元的價格退還給報社,在一個月內(以30天計算)有20天每天可賣出100份,其余10天每天只能賣出60份,但每天報亭從報社訂購的份數(shù)必須相同,若以報亭每天從報社訂購的報紙份數(shù)為自變量x,每月所獲得的利潤為函數(shù)y.
(1)寫出y與x之間的函數(shù)關系式,并指出自變量的取值范圍;
(2)報亭應該每天從報社訂購多少份報紙才能使每月獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某中學九年級甲、乙兩班商定舉行一次遠足活動,A、B兩地相距10千米,甲班從A地出發(fā)勻速步行到B地,乙班從B地出發(fā)勻速步行到A地.兩班同時出發(fā),相向而行.設步行時間為x小時,甲、乙兩班離A地的距離分別為y1、y2千米,y1、y2與x的函數(shù)關系圖象如圖所示.根據(jù)圖象解答下列問題:
(1)直接寫出,y1、y2與x的函數(shù)關系式;
(2)求甲、乙兩班學生出發(fā)后,幾小時相遇?相遇時乙班離A地多少千米?
(3)甲、乙兩班首次相距4千米時所用時間是多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場調查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計劃平均每噸的售價及成本如下表:
銷售方式批發(fā)零售儲藏后銷售
售價(元/噸)300045005500
成本(元/噸)70010001200
若經(jīng)過一段時間,蒜薹按計劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的
1
3

(1)求y與x之間的函數(shù)關系式;
(2)由于受條件限制,經(jīng)冷庫儲藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計劃全部售完蒜薹獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

表示氣溫,有的地方用攝氏溫度,有的地方用華氏溫度.已知攝氏溫度與華氏溫度之間存在著某種函數(shù)關系,下表列出了一些攝氏溫度x(℃)及其所對應的華氏溫度y(℉).
x(℃)-100102030
y(℉)1432506886
(1)以攝氏溫度為橫坐標,以華氏溫度為縱坐標,將表格中的數(shù)據(jù)描點連線;
(2)試確定y與x之間的函數(shù)關系式;
(3)某天,連云港的最高氣溫是8℃,悉尼的最高氣溫是91℉,問這一天悉尼的最高氣溫比連云港的最高氣溫高多少攝氏度(結果保留整數(shù))?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

按要求解答各題
(1)計算:|-3|+(-1)2011×(π-3)0-
327
;
(2)解方程組
2x+3y=7
4x-y=1
;
(3)周長為24cm的等腰三角形的腰長為x,底邊長為y,求y與x之間的函數(shù)關系式和x的取值范圍.

查看答案和解析>>

同步練習冊答案