【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,AD=1cm,AB=3cm,BC=5cm,動點P從點B出發(fā)以1cm/s的速度沿BC的方向運動,動點Q從點C出發(fā)以2cm/s的速度沿CD方向運動,P、Q兩點同時出發(fā),當Q到達點D時停止運動,點P也隨之停止,設運動的時間為ts(t>0)

(1)求線段CD的長;

(2)t為何值時,線段PQ將四邊形ABCD的面積分為1:2兩部分?

【答案】(1)5厘米;(2)當t為 秒時,線段PQ將四邊形ABCD的面積分為1:2兩部分.

【解析】

(1)DE⊥BCE,則四邊形ADEB是矩形,在直角△DEC中運用勾股定理即可求解;

(2)由題意可知BP=t厘米,則PC=(5﹣t)厘米,CQ=2t厘米同時由題意可知0<t≤2.5;QH⊥BC于點H,運用三角形相似可求解QH的長度表達式,則可列出△DEC的面積表達式,再按線段PQ將四邊形ABCD的面積分為1:2兩部分SPQC:S四邊形ABCD=1:3SPQC:S四邊形ABCD=2:3兩種情況分別討論.

(1)解:如圖1,作DE⊥BCE,則四邊形ADEB是矩形.

∴BE=AD=1,DE=AB=3,

∴EC=BC﹣BE=4,

Rt△DEC中,DE2+EC2=DC2

∴DC= =5厘米;

(2)解:P的速度為1厘米/秒,點Q的速度為2厘米/秒,運動時間為t秒,

∴BP=t厘米,PC=(5﹣t)厘米,CQ=2t厘米,QD=(5﹣2t)厘米,

0<t≤2.5,

QH⊥BC于點H,

∴DE∥QH,

∴∠DEC=∠QHC,

∵∠C=∠C,

∴△DEC∽△QHC,

= ,即 =

∴QH= t,

∴SPQC= PCQH= (5﹣t) t=﹣ t2+3t,

S四邊形ABCD= (AD+BC)AB= (1+5)×3=9,

分兩種情況討論:

SPQC:S四邊形ABCD=1:3時,

t2+3t= ×9,即t2﹣5t+5=0,

解得t1= ,t2= (舍去);

②SPQC:S四邊形ABCD=2:3時,

t2+3t= ×9,即t2﹣5t+10=0,

∵△<0,

方程無解,

t 秒時,線段PQ將四邊形ABCD的面積分為1:2兩部分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,四邊形中,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結果保留根號);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtACB中,∠C=90°,AC=BC,一直角三角板的直角頂角OAB邊的中點上,這塊三角板繞O點旋轉,兩條直角邊始終與AC、BC邊分別相交于E、F,連接EF,則在運動過程中,OEFABC的關系是( 。

A. 一定相似 B. EAC中點時相似

C. 不一定相似 D. 無法判斷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,EBC上的一點,連接AE,過B點作BHAE,垂足為點H,延長BHCD于點F,連接AF.

(1)求證AE=BF;

(2)若正方形的邊長是5,BE=2,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,C=90°AC=6,BC=8,動點PA點出發(fā),以1cm/s的速度,沿A—C—BB點運動,同時,動點QC點出發(fā),以2cm/s的速度,沿C—B—AA點運動,當其中一點運動到終點時,兩點同時停止運動。設運動時間為t秒,當t=_______秒時,PCQ的面積等于8cm2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,G是正方形ABCD對角線AC上一點,作GEAD,GFAB,垂足分別為點E、F.

求證:四邊形AFGE與四邊形ABCD相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動課上,老師提出問題:如圖,有一張長4dm,寬3dm的長方形紙板,在紙板的四個角裁去四個相同的小正方形,然后把四邊折起來,做成一個無蓋的盒子,問小正方形的邊長為多少時,盒子的體積最大.

下面是探究過程,請補充完整:

1)設小正方形的邊長為x dm,體積為y dm3,根據(jù)長方體的體積公式得到yx的關系式: ;

2)確定自變量x的取值范圍是 ;

3)列出yx的幾組對應值.

x/dm

y/dm3

1.3

2.2

2.7

m

3.0

2.8

2.5

n

1.5

0.9

4)在下面的平面直角坐標系中,描出補全后的表中各對對應值為坐標的點,并畫出該函數(shù)的圖象如下圖;

結合畫出的函數(shù)圖象,解決問題:

當小正方形的邊長約為 dm時,(保留1位小數(shù)),盒子的體積最大,最大值約為 dm3.(保留1位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,動點P從點B出發(fā),沿矩形的邊由運動,設點P運動的路程為x,的面積為y,把y看作x的函數(shù),函數(shù)的圖像如圖2所示,則的面積為( )

A. 10 B. 16 C. 18 D. 20

查看答案和解析>>

同步練習冊答案