【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖中有四條互相不平行的直線L1、L2、L3、L4所截出的七個角.關(guān)于這七個角的度數(shù)關(guān)系,下列何者正確( )
A. ∠2=∠4+∠7 B. ∠3=∠1+∠6 C. ∠1+∠4+∠6=180° D. ∠2+∠3+∠5=360°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】主題班會課上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學們的一番熱議,達成以下四個觀點:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理競爭,合作雙贏.
要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:
(1)參加本次討論的學生共有 人;
(2)表中 , ;
(3)將條形統(tǒng)計圖補充完整;
(4)現(xiàn)準備從四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點(合理競爭,合作雙贏)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.
(1)如圖1,猜想∠QEP= °;
(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;
(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級組織知識競賽,共設(shè)20道選擇題,各題分值相同,每題必答.右表記錄了5個參賽學生的得分情況.問:
參賽者 | 答對題數(shù) | 答錯題數(shù) | 得分 |
A | 20 | 0 | 100 |
B | 19 | 1 | 94 |
C | 18 | 2 | 88 |
D | 14 | 6 | 64 |
E | 10 | 10 | 40 |
(1)答對一題得 分,答錯一題得 分;
(2)有一同學說:同學甲得了70分,同學乙得了90分,你認為誰的成績是準確的?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市計劃購進甲、乙兩種型號的節(jié)能燈共1000只,這兩種節(jié)能燈的進價、售價如下表:
進價(元/只) | 售價(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)如果進貨款恰好為37000元,那么可以購進甲型節(jié)能燈多少只?
(2)超市為慶祝元旦進行大促銷活動,決定對乙型節(jié)能燈進行打折銷售,要求全部售完后,乙型節(jié)能燈的利潤率為20%,請問乙型節(jié)能燈需打幾折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對甲、乙兩種小麥各選用10塊面積相同的試驗田進行種植試驗,它們的平均畝產(chǎn)量分別是=610千克, =609千克,畝產(chǎn)量的方差分別是=29.6, =2.則關(guān)于兩種小麥推廣種植的合理決策是( )
A. 甲的平均畝產(chǎn)量較高,應(yīng)推廣甲
B. 甲、乙的平均畝產(chǎn)量相差不多,均可推廣
C. 甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣甲
D. 甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣乙
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:是某月份的月歷表,請你認真觀察月歷表,回答以下問題:
(1)如果圈出同一行的三個數(shù),用a表示中間的數(shù),則第一個數(shù),第三個數(shù)怎樣表示?
(2)如果圈出同一列的三個數(shù),用a表示中間的數(shù),則第一個數(shù),第三個數(shù)怎樣表示?
(3)如果圈出如圖所示的任意9個數(shù),這9個數(shù)的和可能是207嗎?如果可能,請求出這9個數(shù);如果不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小知識:如圖,我們稱兩臂長度相等(即)的圓規(guī)為等臂圓規(guī). 當?shù)缺蹐A規(guī)的兩腳擺放在一條直線上時,若張角,則底角.
請運用上述知識解決問題:
如圖,個相同規(guī)格的等臂圓規(guī)的兩腳依次擺放在同一條直線上,其張角度數(shù)變化如下:
,, ,,…
(1)、①由題意可得= ;
②若 平分,則= ;
(2)、= (用含的代數(shù)式表示);
(3)、當時,設(shè)的度數(shù)為,的角平分線與構(gòu)成的角的度數(shù)為,那么與之間的等量關(guān)系是 ,請說明理由. (提示:可以借助下面的局部示意圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com