為了滿足廣大手機(jī)用戶的需求,某移動通信公司推出了三種套餐,資費(fèi)標(biāo)準(zhǔn)如下表所示:
套餐資費(fèi)標(biāo)準(zhǔn) | |||||||
月套餐類型 | 套餐費(fèi)用 | 套餐包含內(nèi)容 | 超出套餐后的費(fèi)用 | ||||
本地主叫市話 | 短信 | 國內(nèi)移動數(shù)據(jù)流量 | 本地主叫市話 | 短信 | 國內(nèi)移動數(shù)據(jù)流量 | ||
套餐一 | 18元 | 30分鐘 | 100條 | 50兆 | 0.1元/ 分鐘 | 0.1元/條 | 0.5元/兆 |
套餐二 | 28元 | 50分鐘 | 150條 | 100兆 | |||
套餐三 | 38元 | 80分鐘 | 200條 | 200兆 | |||
小瑩選擇了該移動公司的一種套餐,下面兩個統(tǒng)計(jì)圖都反映了她的手機(jī)消費(fèi)情況.
(1)已知小瑩2013年10月套餐外通話費(fèi)為33.6元,則她選擇的上網(wǎng)套餐為________套餐(填“一”、“二”或“三”);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在圖中標(biāo)明相應(yīng)的數(shù)據(jù);
(3)根據(jù)2013年后半年每月的消費(fèi)情況,小瑩估計(jì)自己每月本地主叫市話通話大約430分鐘,發(fā)短信大約240條,國內(nèi)移動數(shù)據(jù)流量使用量大約為120兆,除此之外不再產(chǎn)生其他費(fèi)用,則小瑩應(yīng)該選擇________套餐最劃算(填“一”、“二”或“三”);選擇該套餐后,她每月的手機(jī)消費(fèi)總額約為________元.
(1)二;(2)補(bǔ)全條形統(tǒng)計(jì)圖見解析;(3)三;77.
【解析】
試題分析:(1)求出10月的手機(jī)消費(fèi)總額,從而求出套餐費(fèi)用即可得出她選擇的上網(wǎng)套餐.
(2)根據(jù)(1)的數(shù)據(jù)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)求出三種套餐的費(fèi)用作出判斷,也即得出她每月的手機(jī)消費(fèi)總額.
試題解析:(1)∵小瑩2013年10月套餐外通話費(fèi)為33.6元,占手機(jī)消費(fèi)的42%,
∴小瑩2013年10月手機(jī)消費(fèi)計(jì)(元).
又∵套餐費(fèi)用占手機(jī)消費(fèi)的35%,∴套餐費(fèi)用為(元).
∴她選擇的上網(wǎng)套餐為二套餐.
(2)補(bǔ)全條形統(tǒng)計(jì)圖如下:
(3)套餐一的費(fèi)用=(元);
套餐二的費(fèi)用=(元);
套餐三的費(fèi)用=(元).
∴小瑩應(yīng)該選擇三套餐最劃算,她每月的手機(jī)消費(fèi)總額約為77元.
考點(diǎn):1.扇形統(tǒng)計(jì)圖;2.條形扇形統(tǒng)計(jì)圖;3.頻數(shù)、頻率和總量的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年北京市西城區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
在△ABC,∠BAC為銳角,AB>AC, AD平分∠BAC交BC于點(diǎn)D.
(1)如圖1,若△ABC是等腰直角三角形,直接寫出線段AC,CD,AB之間的數(shù)量關(guān)系;
(2)BC的垂直平分線交AD延長線于點(diǎn)E,交BC于點(diǎn)F.
①如圖2,若∠ABE=60°,判斷AC,CE,AB之間有怎樣的數(shù)量關(guān)系并加以證明;
②如圖3,若,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市西城區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B順時針旋轉(zhuǎn)得到△BCD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市海淀區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
對于半徑為r的⊙P及一個正方形給出如下定義:若⊙P上存在到此正方形四條邊距離都相等的點(diǎn),則稱⊙P是該正方形的“等距圓”.如圖1,在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(2,4),頂點(diǎn)C、D在x軸上,且點(diǎn)C在點(diǎn)D的左側(cè).
(1)當(dāng)r=時,
①在P1(0,-3),P2(4,6),P3(,2)中可以成為正方形ABCD的“等距圓”的圓心的是_______________;
②若點(diǎn)P在直線上,且⊙P是正方形ABCD的“等距圓”,則點(diǎn)P的坐標(biāo)為_______________;
(2)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點(diǎn)F的坐標(biāo)為(6,2),頂點(diǎn)E、H在y軸上,且點(diǎn)H在點(diǎn)E的上方.
①若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P 在y軸上截得的弦長;
②將正方形ABCD繞著點(diǎn)D旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,線段HF上沒有一個點(diǎn)能成為它的“等距圓”的圓心,則r的取值范圍是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市海淀區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在△ABC與△BAD中,AD與BC相交于點(diǎn)E,∠C=∠D,EA=EB.
求證:BC=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市海淀區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖1,AB是半圓O的直徑,正方形OPNM的對角線ON與AB垂直且相等,Q是OP的中點(diǎn).一只機(jī)器甲蟲從點(diǎn)A出發(fā)勻速爬行,它先沿直徑爬到點(diǎn)B,再沿半圓爬回到點(diǎn)A,一臺微型記錄儀記錄了甲蟲的爬行過程.設(shè)甲蟲爬行的時間為t,甲蟲與微型記錄儀之間的距離為y,表示y與t的函數(shù)關(guān)系的圖象如圖2所示,那么微型記錄儀可能位于圖1中的( )
A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市懷柔區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于點(diǎn)A,AC=2,BD⊥AB于點(diǎn)B,BD=6,以AB為直徑的半圓O上有一動點(diǎn)P(不與A、B兩點(diǎn)重合),連接PD、PC,我們把由五條線段AB、BD、DP、PC、CA所組成的封閉圖形ABDPC叫做點(diǎn)P的關(guān)聯(lián)圖形,如圖1所示.
(1)如圖2,當(dāng)P運(yùn)動到半圓O與y軸的交點(diǎn)位置時,求點(diǎn)P的關(guān)聯(lián)圖形的面積.
(2)如圖3,連接CD、OC、OD,判斷△OCD的形狀,并加以證明.
(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,點(diǎn)P的關(guān)聯(lián)圖形的面積最大,簡要說明理由,并求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com