如圖,P為正方形ABCD的對稱中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點(diǎn)H從原點(diǎn)O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運(yùn)動,同時,點(diǎn)R從O出發(fā)沿OM方向以個單位每秒速度運(yùn)動,運(yùn)動時間為t.
求:(1)C點(diǎn)的坐標(biāo)為 ;
(2)當(dāng)t為何值時,△ANO與△DMR相似?
(3)①求△HCR面積S與t的函數(shù)關(guān)系式;
②并求以A、B、C、R為頂點(diǎn)的四邊形是梯形時t的值及S的值.
(1)(4,1);(2)t=2或t=3;(3)(3)①S=-t2+2t(0<t≤4),S=t2-2t(t>4);
②t=4.5,S=或t=,S=或t=,S=.
解析試題分析:(1)作CQ⊥x軸,根據(jù)正方形的性質(zhì)可得AB=BC,∠ABC=90°,即有∠CBQ=∠OAB,從而可以證得△AOB≌△BQC,即得CQ=OB,BQ=OA,再結(jié)合A(0,3),B(1,0)求解即可;
(2)由P是正方形的對稱中心可求得點(diǎn)P的坐標(biāo),即可得到∠MOB、∠AON的度數(shù),再根據(jù)路程、速度、時間的關(guān)系表示出OR、OH的長,即可得到RH∥y軸,即R、H的橫坐標(biāo)相同,根據(jù)平行線的性質(zhì)可得∠DMR=∠ANO,若△ANO與△DMR相似,則∠MDR=∠AON=45°或∠DRM=∠AON=45°,從而可以求得結(jié)果;
(3)①由R速度為,H速度為1,且∠ROH=45°可得tan∠ROH=1,根據(jù)RH始終垂直于x軸可得RH=OH=t, 設(shè)△HCR的邊RH的高為h,再分0<t≤4與t>4兩種情況根據(jù)三角形的面積公式求解;
②以A、B、C、R為頂點(diǎn)的梯形,有三種可能:Ⅰ.頂邊和底邊分別為BC、AR,此時BC∥AR;Ⅱ.頂邊、底邊分別為CR、AB,此時CR∥AB,且R與M重合;Ⅲ.當(dāng)AC和BR是梯形的底時,根據(jù)梯形的性質(zhì)及一次函數(shù)的性質(zhì)求解即可.
(1)作CQ⊥x軸,
∵正方形ABCD,
∴AB=BC,∠ABC=90°,
∴∠CBQ=∠OAB,
∴△AOB≌△BQC,
∴CQ=OB,BQ=OA,
∵A(0,3),B(1,0),
∴BQ=3,CQ=1,
∴OQ=4,
∴C(4,1);
(2)∵P是正方形的對稱中心,由A(0,3),C(4,1),
∴P(2,2);
∴∠MOB=45°,
∴∠AON=45°,
∵點(diǎn)R從O出發(fā)沿OM方向以個單位,每秒速度運(yùn)動,運(yùn)動時間為t,
∴OR=t,OH=t.
∴RH∥y軸,即R、H的橫坐標(biāo)相同;
∵AB∥CD,
∴∠DMR=∠ANO,
若△ANO與△DMR相似,則∠MDR=∠AON=45°或∠DRM=∠AON=45°,
①當(dāng)∠MDR=45°時,R、P重合,∵R(2,2),∴t=2;
②當(dāng)∠DRM=45°時,DR∥y軸,∵D(3,4),∴R(3,3),∴t=3,
∴當(dāng)t=2或t=3時,△ANO與△DMR相似;
(3)①∵R速度為,H速度為1,且∠ROH=45°,
∴tan∠ROH=1,
∴RH始終垂直于x軸,
∴RH=OH=t,
設(shè)△HCR的邊RH的高為h,
∴h=|4-t|.
∴S△HCR=h•t=|-t2+4t|,
∴S=-t2+2t(0<t≤4);S=t2-2t(t>4);
②以A、B、C、R為頂點(diǎn)的梯形,有三種可能:
Ⅰ.頂邊和底邊分別為BC、AR,此時BC∥AR.
如圖,延長AD,使其與OM相交于點(diǎn)R,
∴AD的斜率=tan∠BAO=,
∴直線AD為:y=+3.
∴R坐標(biāo)為(4.5,4.5),
∴此時四邊形ABCR為梯形,
∴t=4.5.S=;
Ⅱ.頂邊、底邊分別為CR、AB,此時CR∥AB,且R與M重合.
∴CD的斜率=-3,且直線CD過點(diǎn)C,
∴直線CD為:y-1=-3•(x-4)
∴y=-3x+13,
∵OM與CD交于點(diǎn)M(即R),
∴M為(,),
∴此時四邊形ABCR為梯形,
∴t=.S=
Ⅲ.當(dāng)AC和BR是梯形的底時,設(shè)AC的解析式是y=kx+b,
則,解得,
則解析式是y=-x+4,
設(shè)BC的解析式是y=-x+c,
則-1+c=0,解得c=1,
則函數(shù)的解析式是y=-x+1,
∴R坐標(biāo)(,)
∴t=,S=.
考點(diǎn):動點(diǎn)問題的綜合題
點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
10 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com