如果(x2+px+q)(x2-5x+7)的展開式中不含有x3,x2項,則p=
5
5
,q=
18
18
分析:先用多項式乘以多項式的運算法則展開求它們的積,并且把p、q看作常數(shù)合并關于x的同類項,令x3,x2項的系數(shù)為0,構造關于p、q的二元一次方程組,求出p、q的值.
解答:解:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,
又∵展開式中不含x3,x2項,
∴p-5=0,7-5p+q=0,
解得p=5,q=18.
故答案為5,18.
點評:本題主要考查了多項式乘多項式的運算,注意當要求多項式中不含有哪一項時,應讓這一項的系數(shù)為0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如果方程x2+px+q=0的一根是另一根的2倍,那么p、q所滿足的關系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如果多項式x2+px+12可以分解成兩個一次因式的積,那么整數(shù)P的值是
±7或±8或±13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果方程x2+px+1=0(p>0)的兩根之差是1,則p=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設p是質數(shù),如果方程x2-px-580p=0的兩根均為整數(shù),則(  )
A、0<p<10B、10<p<20C、20<p<30D、30<p<40

查看答案和解析>>

同步練習冊答案