【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),∠ACB=90°,AC=BC,小明量出AB=26cm,小聰很快就知道了砌墻磚塊的厚度的平方(每塊磚的厚度相等)為________cm.

【答案】

【解析】

過點BBFAD于點F,根據(jù)全等三角形的判定定理證明△ACD≌△CEB,進(jìn)而利用勾股定理,在RtAFB中,AF2+BF2=AB2,求出即可.

過點BBFAD于點F,

設(shè)砌墻磚塊的厚度為xcm,則BE=2xcm,則AD=3xcm

∵∠ACB=90°,

∴∠ACD+ECB=90°,

∵∠ECB+CBE=90°,

∴∠ACD=CBE,

在△ACD和△CEB中,

,

∴△ACD≌△CEBAAS),

AD=CE,CD=BE,

DE=5x,AF=AD-BE=x,

∴在RtAFB中,

AF2+BF2=AB2,

25x2+x2=676,

解得x=,

∴砌墻磚塊的厚度是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC=6,BD=8,點E、F分別是邊AB、BC的中點,點P在AC上運動,在運動過程中,存在PE+PF的最小值,則這個最小值是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c過點A(0,4)和C(8,0),點P(t,0)是線段OC上的動點,PB⊥PA,且PB= PA,過點B作x軸的垂線,過點A作y軸的垂線,兩直線相交于點D;

(1)求拋物線的解析式;
(2)當(dāng)t為何值時,點D落在拋物線上;
(3)是否存在t,使得以A,B,D為頂點的三角形與△AOP相似?若存在,求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠需要在規(guī)定時間內(nèi)生產(chǎn)1400個某種零件,該工廠按一定速度加工5天后,發(fā)現(xiàn)按此速度加工下去會延期10天完工,于是又抽調(diào)了一批工人投入這種零件的生產(chǎn),使工作效率提高了50%,結(jié)果如期完成加工任務(wù).

1)求該工廠前5天每天生產(chǎn)多少個這種零件;

2)求規(guī)定時間是多少天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有若干個紅、黃、藍(lán)、綠四種顏色的小球,小球除顏色外完全相同,為估計該口袋中四種顏色的小球數(shù)量,每次從口袋中隨機摸出一球記下顏色并放回,重復(fù)多次試驗,匯總實驗結(jié)果繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

根據(jù)以上信息解答下列問題:
(1)求實驗總次數(shù),并補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,摸到黃色小球次數(shù)所在扇形的圓心角度數(shù)為多少度?
(3)已知該口袋中有10個紅球,請你根據(jù)實驗結(jié)果估計口袋中綠球的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,必然事件是( )
A.拋擲1個均勻的骰子,出現(xiàn)6點向上
B.兩直線被第三條直線所截,同位角相等
C.366人中至少有2人的生日相同
D.實數(shù)的絕對值是非負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標(biāo)分別是A(-2,1),B(-3,-2),C1,-2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

1)在圖中畫出△A1B1C1;

2)點A1B1,C1的坐標(biāo)分別為     、  ;

3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩建筑物AB、CD的水平距離BC為60m,從A點測得D點的俯角α為30°,測得C點的俯角β為45°,求建筑物AB、CD的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:

根據(jù)以上信息解答下列問題:

1)求AB兩種商品的單價;

2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案