【題目】學(xué)校通過初評決定最后從甲、乙、丙三個班中推薦一個班為縣級先進(jìn)班集體,下表是三個班的五項素質(zhì)考評得分表。

五項素質(zhì)考評得分表(單位:分)

班級

行為規(guī)范

學(xué)習(xí)成績

校運動會

藝術(shù)獲獎

勞動衛(wèi)生

甲班

10

10

6

10

7

乙班

10

8

8

9

8

丙班

9

10

9

6

9

根據(jù)統(tǒng)計表中的信息回答下列問題:

1)請你補全五項成績考評分析表中的數(shù)據(jù):

班級

平均分

眾數(shù)

中位數(shù)

甲班

8.6

10

乙班

8.6

8

丙班

9

9

2)參照上表中的數(shù)據(jù),你推薦哪個班為縣級先進(jìn)班集體?并說明理由。

3)如果學(xué)校把行為規(guī)范、學(xué)習(xí)成績、校運動會、藝術(shù)獲獎、勞動衛(wèi)生五項考評成績按照32113的比確定班級的綜合成績,學(xué)生處的李老師根據(jù)這個綜合成績,繪制了一幅不完整的條形統(tǒng)計圖,請將這個統(tǒng)計圖補充完整,按照這個成績,應(yīng)推薦哪個班為縣級先進(jìn)班集體?為什么?

【答案】18.6,8,10;(2)甲班:三個班的平均數(shù)相同,甲班眾數(shù)與中位數(shù)高于乙和丙;(3)畫圖見解析,丙班.

【解析】

(1)根據(jù)平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù),眾數(shù)是出現(xiàn)次數(shù)最多的數(shù)據(jù),中位數(shù)是一組數(shù)據(jù)按從小到大或從大到小的順序排列中間的數(shù)(或中間兩個數(shù)的平均數(shù)),可得答案;

(2)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的大小比較,可得答案;

(3)根據(jù)加權(quán)平均數(shù)的大小比較,可得答案.

(1) ①=(9+10+9+6+9)=8.6,②觀察五項素質(zhì)考評得分表可知乙班的眾數(shù)是8,③觀察五項素質(zhì)考評得分表可知甲班的中位數(shù)是10;

(2)甲班,理由為:三個班的平均數(shù)相同,甲班的眾數(shù)與中位數(shù)都高于乙班與丙班;

(3)根據(jù)題意,得:丙班的平均數(shù)為9×+10×+9×+6×+9×=8.9

補全條形統(tǒng)計圖,如圖所示

∵8.5<8.7<8.9,

∴依照這個成績,應(yīng)推薦丙班為市級先進(jìn)班集體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上兩點之間的距離等于相應(yīng)兩數(shù)差的絕對值,即:點A、B表示的數(shù)分別為a、b,這兩點之間的距離為AB=,如:表示數(shù)15的兩點之間的距離可表示為,表示數(shù)-23的兩點之間的距離可表示為.

1)數(shù)軸上表示27的兩點之間的距離是   ,數(shù)軸上表示3-6的兩點之間的距離是   ;

2)數(shù)軸上表示x-2的兩點MN之間的距離是   ,如果,則x   ;

3)當(dāng)式子:取最小值時,x的值為   ,最小值為 .

(借助數(shù)軸,畫出圖形,寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折線ABC是在某市乘出租車所付車費y(元)與行車?yán)锍?/span>xkm之間的函數(shù)關(guān)系圖象.

1)根據(jù)圖象,求當(dāng)x≥3時的函數(shù)關(guān)系式;

2)某人乘坐2.5km,應(yīng)付多少錢?

3)某人乘坐13km,應(yīng)付多少錢?

4)若某人付車費30.8元,出租車行駛了多少路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 觀察下列三行數(shù):

2,4,8,16,32,

,1,2,4,8,

1,5,7,17,31,

如圖,第一行數(shù)的第n(n為正整數(shù))個數(shù)用來表示,第二行數(shù)的第n個數(shù)用來表示,第三行數(shù)的第n個數(shù)用來表示

1)根據(jù)你發(fā)現(xiàn)的規(guī)律,請用含n的代數(shù)式表示數(shù),,的值= ; = ; = ;

2)取每行的第6個數(shù),計算這三個數(shù)的和

3)若記為x, (結(jié)果用含x的式子表示并化簡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸交于點A1,0),與y軸交于點B0,-2)。

1)求直線AB的解析式;

2)若直線AB上的點C在第一象限,且SAOC =2,求點C的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n為大于1的整數(shù))

(1)計算a15的值;

(2)通過拼圖你發(fā)現(xiàn)前三個圖形的面積之和與第四個正方形的面積之間有什么關(guān)系:

__________________________________(用含a、b的式子表示);

(3)根據(jù)(2)中結(jié)論,探究an=(n+1)2-(n-1)2是否為4的倍數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于AB兩點(AB點左側(cè)),與y軸交于點C,對稱軸為直線x=OA=2,OD平分∠BOC交拋物線于點D(點D在第一象限);

1)求拋物線的解析式和點D的坐標(biāo);

2)點M是拋物線上的動點,在x軸上存在一點N,使得AD、MN四個點為頂點的四邊形是平行四邊形,求出點M的坐標(biāo);

3)在拋物線的對稱軸上,是否存在一點P,使得BPD的周長最小?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,正方形ABCD,點E、點F分別在ABAD上,且AE=AF.此時,線段BE、DF的數(shù)量關(guān)系是 ,位置關(guān)系是 .請直接寫出結(jié)論.

(2)如圖②,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn)∠α,當(dāng)0°<α<90°,連接BE、DF,此時(1)中的結(jié)論是否成立,如果成立,請證明;如果不成立,請說明理由。

(3)如圖③,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn)∠α,當(dāng)90°<α<180°時,連接BD、DE、EF、FB,得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點A(2,0),B(0,4).

(1)求此函數(shù)的解析式;

(2)若點P為此一次函數(shù)圖象上一動點,且△POA的面積為2,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案