【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC.給出下列結論:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正確結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=90°,點A、B分別在直線OM、ON上,BC是∠ABN的平分線.
(1)如圖1,若BC所在直線交∠OAB的平分線于點D時,嘗試完成①、②兩題:
①當∠ABO=30°時,∠ADB= °
②當點A、B分別在射線OM、ON上運動時(不與點O重合),試問:隨著點A、B的運動,∠ADB的大小會變嗎?如果不會,請求出∠ADB的度數(shù);如果會,請求出∠ADB的度數(shù)的變化范圍;
(2)如圖2, 若BC所在直線交∠BAM的平分線于點C時,將△ABC沿EF折疊,使點C落在四邊形ABEF內點C′的位置.求∠BEC′+∠AFC′ 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達位于小島南偏東60°方向的B處。
(1)求漁船從A到B的航行過程中與小島M之間的最小距離(結果用根號表示):
(2)若漁船以20海里/小時的速度從B沿BM方向行駛,求漁船從B到達小島M的航行時間(結果精確到0.1小時)。(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把直線y=-x-1沿x軸向右平移2個單位,所得直線的函數(shù)解析式為( )
A. y=-x+1B. y=-x-3C. y=-2x-1D. y=2x-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】時光飛逝,小學、中學的學習時光已過去,九年的在校時間大約有16200小時,請將數(shù)16200用科學記數(shù)法表示為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】46中8年級11班為開展“迎2013年新春”的主題班會活動,派了小林和小明兩位同學去學校附近的超市購買鋼筆作為獎品,已知該超市的英雄牌鋼筆每支8元,派克牌鋼筆每支4.8元,他們要購買這兩種筆共40支.
(1)如果他們兩人一共帶了240元,全部用于購買獎品,那么能買這兩種筆各多少支?
(2)小林和小明根據(jù)主題班會活動的設獎情況,決定所購買的英雄牌鋼筆數(shù)量要少于派克牌鋼筆的數(shù)量的,但又不少于派克牌鋼筆的數(shù)量的。如果他們買了英雄牌鋼筆支,買這兩種筆共花了元,
①請寫出(元)關于(支)的函數(shù)關系式,并求出自變量的取值范圍;
②請幫他們計算一下,這兩種筆各購買多少支時,所花的錢最少,此時花了多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)、如圖①,對△ABC作變換[50°,]得△AB′C′,則S△AB′C′:S△ABC= ;直線BC與直線B′C′所夾的銳角為 度;
(2)、如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)、如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com