【題目】便民”水泥代銷點銷售某種水泥,每噸進價為250元,如果每噸銷售價定為290元時,平均每天可售出16噸.
(1)若代銷點采取降低促銷的方式,試建立每噸的銷售利潤y(元)與每噸降低x(元)之間的函數(shù)關(guān)系式;
(2)若每噸售價每降低5元,則平均每天能多售出4噸,問:每噸水泥的實際售價定為多少元時,每天的銷售利潤平均可達720元.
【答案】(1)y=40-x;(2)每噸水泥的實際售價應(yīng)定為280元時,每天的銷售利潤平均可達720元.
【解析】
(1)未采取降低促銷方式前每噸水泥的利潤為290-250=40元,代銷點采取降低促銷的方式后每噸水泥的利潤為(40-x)元;
(2)先求出降價后每天售出水泥的噸數(shù),再乘以每天的利潤正好等于720元,解方程即可求出降低的價錢,從而求得每噸水泥的實際售價.
解:(1)依題意得y=290-x-250=40-x;
(2)設(shè)每噸水泥降低x元,依題意得
(40-x)(16+x)=720,
解得x1=x2=10,
∴290-10=280.
答:每噸水泥的實際售價應(yīng)定為280元時,每天的銷售利潤平均可達720元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請結(jié)合圖中所給信息解答下列問題:
(1)本次共調(diào)查 名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是 ;
(2)補全條形統(tǒng)計圖;
(3)學(xué)校準備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求丙和丁兩名學(xué)生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點,,過點作直線,
(1)若,點是線段的中點,點在射線上,當(dāng)是邊長為5的等腰三角形,共有幾個這樣的點,并嘗試求出點的坐標;
(2)若直線與不平行,在直線上,是否存在點,使得是直角三角形,且,若存在,求出這樣的點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) (是常數(shù),)的圖象如圖所示,下列結(jié)論:①;②;③;④;⑤,其中錯誤的結(jié)論有( )個.
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點E,F分別是AD,BC的中點,G,H分別是BD,AC的中點,AB,CD滿足( )條件時,四邊形EGFH是菱形.
A.AB=CDB.AB//CDC.AB⊥CDD.AB=CD AB//CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC的中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB∶OE=3∶2.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2經(jīng)過點A(﹣1,0)和點B(4,0),且與y軸交于點C,點D的坐標為(2,0),點P(m,n)是該拋物線上的一個動點,連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當(dāng)△PDB的面積等于△CAD的面積時,求點P的坐標;
(3)當(dāng)m>0,n>0時,過點P作直線PE⊥y軸于點E交直線BC于點F,過點F作FG⊥x軸于點G,連接EG,請直接寫出隨著點P的運動,線段EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推進課改,王老師把班級里60名學(xué)生分成若干小組,每小組只能是5人或6人,則有幾種分組方案( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)已知∠BAO=25°,點Q是弧AmB上的一點.
①求∠AQB的度數(shù);
②若OA=18,求弧AmB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com