【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
【答案】(1) B(,2).(2)證明見解析.
【解析】
試題分析:(1)在Rt△ABN中,求出AN、AB即可解決問題;
(2)連接MC,NC.只要證明∠MCD=90°即可
試題解析:(1)∵A的坐標為(0,6),N(0,2),
∴AN=4,
∵∠ABN=30°,∠ANB=90°,
∴AB=2AN=8,
∴由勾股定理可知:NB=,
∴B(,2).
(2)連接MC,NC
∵AN是⊙M的直徑,
∴∠ACN=90°,
∴∠NCB=90°,
在Rt△NCB中,D為NB的中點,
∴CD=NB=ND,
∴∠CND=∠NCD,
∵MC=MN,
∴∠MCN=∠MNC,
∵∠MNC+∠CND=90°,
∴∠MCN+∠NCD=90°,
即MC⊥CD.
∴直線CD是⊙M的切線.
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結論正確的個數是( )
A.3
B.4
C.1
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,某校政教處對部分學生就校園安全知識的了解程度,進行了隨機抽樣調查,并根據學生的成績劃分為A(熟悉)、B(基本了解)、C(略有知曉)、D(知之甚少)四個等次,繪制成如圖所示的兩幅統(tǒng)計圖.
請根據以上信息回答下列問題:
(1)分別求出統(tǒng)計圖中m,n的值;
(2)估計該校2350名學生中為A(熟悉)和B(基本了解)檔次的學生共有多少人;
(3)從被調查的“熟悉”檔次的學生中隨機抽取2人,參加市舉辦的校園安全知識競賽,請用列表或畫樹狀圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據統(tǒng)計:2014年南通市在籍人口總數約為7700000人,將7700000用科學記數法表示為( 。
A.0.77×107
B.7.7×107
C.0.77×106
D.7.7×106
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于 AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題是真命題的是( )
A.過一點有且只有一條直線與已知直線平行
B.兩條直線被第三條直線所截,內錯角相等
C.過一點只能畫一條直線
D.兩點之間,線段最短
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的長為8,寬為6,現將矩形沿對角線BD折疊,C點到達C′處,C′B交AD于E.
(1)判斷△EBD的形狀,并說明理由;
(2)求DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com