【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo)為( )
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
【答案】A
【解析】
直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關(guān)系,再利用勾股定理得出答案.
過點(diǎn)C1作C1N⊥x軸于點(diǎn)N,過點(diǎn)A1作A1M⊥x軸于點(diǎn)M,
由題意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠3,
則△A1OM∽△OC1N,
∵OA=5,OC=3,
∴OA1=5,A1M=3,
∴OM=4,
∴設(shè)NO=3x,則NC1=4x,OC1=3,
則(3x)2+(4x)2=9,
解得:x=±(負(fù)數(shù)舍去),
則NO=,NC1=,
故點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo)為:(-,).
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是【 】
A.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則甲組數(shù)據(jù)比乙組數(shù)據(jù)大
B.從1,2,3,4,5,中隨機(jī)抽取一個數(shù),是偶數(shù)的可能性比較大
C.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是3
D.若某種游戲活動的中獎率是30%,則參加這種活動10次必有3次中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位在五月份準(zhǔn)備組織部分員工到背景旅游7天,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報(bào)價(jià)均為每人7天共2000天,兩家旅行社同時(shí)都對10人以上的團(tuán)體推出了優(yōu)惠舉措;甲旅行社對每位員工七五折優(yōu)惠;而乙旅行社是免去一位員工的費(fèi)用,其余員工八折優(yōu)惠.
(1)如果設(shè)參加旅游的員工共有人,則甲旅行社的費(fèi)用為 元,乙旅行社的費(fèi)用為 元;(用含的式子表示,并化簡)
(2)假如這個單位有20名員工參加旅游,該單位選擇哪一家旅行社比較合算?并說明理由.
(3)假如這7天的日期之和為63的倍數(shù),則他們可能于五月幾號出發(fā)?(寫出所有符合條件的可能性,并寫出簡單的計(jì)算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD、EF相交于點(diǎn)O,且∠AOC=90°,∠AOE=140°,
(1)直線AB與直線______垂直,記作______;
(2)直線AB與直線______斜交,夾角的大小為______;
(3)直線_____與直線______夾角的大小為50°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A,B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D,E.求證:△AEC≌△CDB.
(2)如圖2,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的結(jié)論,請按照圖中所標(biāo)注的數(shù)據(jù)計(jì)算圖中實(shí)線所圍成的圖形的面積S= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在坐標(biāo)平面內(nèi),點(diǎn)O是坐標(biāo)原點(diǎn),A(0,6)、B(2,0),且∠OBA=60°,將△OAB沿直線AB翻折,得到△CAB,點(diǎn)O與點(diǎn)C對應(yīng)。
(1)求點(diǎn)C的坐標(biāo);
(2)動點(diǎn)F從點(diǎn)O出發(fā),以2個單位長度/秒的速度沿折線O—A—C向終點(diǎn)C運(yùn)動,設(shè)△FOB的面積為S(S≠0),點(diǎn)F的運(yùn)動時(shí)間為t秒,求S與t的關(guān)系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,過點(diǎn)B作x軸垂線,交AC于點(diǎn)E,在點(diǎn)F的運(yùn)動過程中,當(dāng)t為何值時(shí),△BEF是以BE為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P(m,n)為線段AB上的一個動點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,問:
①若△PAO的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;
②是否存在點(diǎn)P,使EF的值最?若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com