【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,M、N分別是BA,CD延長線上的點,∠EAM和∠EDN的平分線交于點F,下列結(jié)論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F為定值.其中結(jié)論正確的有( )
A. 4個B. 1個C. 2個D. 3個
【答案】D
【解析】
根據(jù)AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分線交于點F,由三角形內(nèi)角和定理以及平行線的判定和性質(zhì)分別分析判斷即可.
如圖,
∵AB⊥BC,AE⊥DE,
∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,
∴∠1=∠DEC,
又∵∠1+∠2=90°,
∴∠DEC+∠2=90°,
∴∠C=90°,
∴∠B+∠C=180°,
∴AB∥CD,故①正確;
∴∠ADN=∠BAD,
∵∠ADC+∠ADN=180°,
∴∠BAD+∠ADC=180°,
又∵∠AEB≠∠BAD,
∴AEB+∠ADC≠180°,故②錯誤;
∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,
∴∠2=∠4,
∴DE平分∠ADC,故③正確;
∵∠1+∠2=90°,
∴∠EAM+∠EDN=360°-90°=270°.
∵∠EAM和∠EDN的平分線交于點F,
∴∠EAF+∠EDF=×270°=135°.
∵AE⊥DE,
∴∠3+∠4=90°,
∴∠FAD+∠FDA=135°-90°=45°,
∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°,故④正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點D,E為BC邊上的兩點,且∠DAE=45°,連接EF,BF,則下列結(jié)論:①△AFB≌△ADC;②△ABD為等腰三角形;③∠ADC=120°;④BE2+DC2=DE2,其中正確的有( )個
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,延長BC到點E,使CE=1,連接DE,動點P從點A出發(fā)以每秒1個單位的速度沿AB-BC-CD-DA向終點A運動,設(shè)點P的運動時間為t秒,當(dāng)△ABP和△DCE全等時,t的值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)平面內(nèi),已知點A(0,3)、B(6,5),
(1)連接AB,在x軸上確定點P,使PA=PB(用尺規(guī)作圖,保留作圖痕跡,不寫作法),并求出P點坐標(biāo);
(2)點Q是x軸上的動點,求點Q與A、B兩點的距離之和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一水果店,從批發(fā)市場按4元千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費用300元,據(jù)預(yù)測,每天每千克價格上漲元.
設(shè)x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關(guān)系式;
若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出y與x的函數(shù)關(guān)系式;
該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某農(nóng)戶發(fā)展養(yǎng)禽業(yè),準(zhǔn)備利用現(xiàn)有的34米長的籬笆靠墻AB(墻長為25米)圍成一個面積為120平方米的長方形養(yǎng)雞場,這個養(yǎng)雞場的長和寬各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[x]表示不超過x的最大整數(shù),例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命題:①當(dāng)x=﹣0.5時,y=0.5;②y的取值范圍是:0≤y≤1;③對于所有的自變量x,函數(shù)值y隨著x增大而一直增大.其中正確命題有 (只填寫正確命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com