如圖,已知⊙P的半徑為2,圓心P在拋物線(xiàn)y=
1
2
x2-2上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為_(kāi)_____.
∵⊙P的半徑為2,圓心P在拋物線(xiàn)y=
1
2
x2-2上運(yùn)動(dòng),
∴當(dāng)⊙P與x軸相切時(shí),假設(shè)切點(diǎn)為A,
∴PA=2,
∴|
1
2
x2-2|=2
1
2
x2-2=2,或
1
2
x2-2=-2,
解得x=±2
2
,或x=0,
∴P點(diǎn)的坐標(biāo)為:(2
2
,2)或(-2
2
,2)或(0,-2).
故答案為:(2
2
,2)或(-2
2
,2)或(0,-2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(c,-2),,求證:這個(gè)二次函數(shù)圖象的對(duì)稱(chēng)軸是x=3.
題目中的矩形框部分是一段墨水污染了無(wú)法辨認(rèn)的文字.
(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請(qǐng)寫(xiě)出求解過(guò)程;若不能,請(qǐng)說(shuō)明理由;
(2)請(qǐng)你根據(jù)已有的信息,在原題中的矩形框中,填加一個(gè)適當(dāng)?shù)臈l件,把原題補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上OB=
3
,∠BAO=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過(guò)O、D、A三點(diǎn)的二次函數(shù)解析式;
(3)設(shè)直線(xiàn)BE與(2)中二次函數(shù)圖象的對(duì)稱(chēng)軸交于點(diǎn)F,M為OF中點(diǎn),N為AF中點(diǎn),在x軸上是否存在點(diǎn)P,使△PMN的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于任意兩個(gè)二次函數(shù):y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),當(dāng)|a1|=|a2|時(shí),我們稱(chēng)這兩個(gè)二次函數(shù)的圖象為全等拋物線(xiàn).
現(xiàn)有△ABM,A(-1,0),B(1,0).記過(guò)三點(diǎn)的二次函數(shù)拋物線(xiàn)為“C□□□”(“□□□”中填寫(xiě)相應(yīng)三個(gè)點(diǎn)的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).請(qǐng)通過(guò)計(jì)算判斷CABM與CABN是否為全等拋物線(xiàn);
(2)在圖2中,以A、B、M三點(diǎn)為頂點(diǎn),畫(huà)出平行四邊形.
①若已知M(0,n),求拋物線(xiàn)CABM的解析式,并直接寫(xiě)出所有過(guò)平行四邊形中三個(gè)頂點(diǎn)且能與CABM全等的拋物線(xiàn)解析式.
②若已知M(m,n),當(dāng)m,n滿(mǎn)足什么條件時(shí),存在拋物線(xiàn)CABM根據(jù)以上的探究結(jié)果,判斷是否存在過(guò)平行四邊形中三個(gè)頂點(diǎn)且能與CABM全等的拋物線(xiàn)?若存在,請(qǐng)列出所有滿(mǎn)足條件的拋物線(xiàn)“C□□□”;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

下表給出了x與函數(shù)y=x2+bx+c的一些對(duì)應(yīng)值:
x0136
y50-45
(1)請(qǐng)根據(jù)表格求出y=x2+bx+c的解析式;
(2)寫(xiě)出拋物線(xiàn)y=x2+bx+c的對(duì)稱(chēng)軸與頂點(diǎn)坐標(biāo);
(3)求出y=x2+bx+c與x軸的交點(diǎn)坐標(biāo);
(4)畫(huà)出y=x2+bx+c的大致圖象,并結(jié)合圖象指出,當(dāng)y<0,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線(xiàn)y=(x-3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).

(1)求點(diǎn)B及點(diǎn)D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)E.
①若線(xiàn)段BD上一點(diǎn)P,使∠DCP=∠BDE,求點(diǎn)P的坐標(biāo).
②若拋物線(xiàn)上一點(diǎn)M,作MN⊥CD,交直線(xiàn)CD于點(diǎn)N,使∠CMN=∠BDE,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用長(zhǎng)為6m的鋁合金型材做一個(gè)形狀如圖所示的矩形窗框,要使做成的窗框的透光面積最大,則該窗的長(zhǎng),寬應(yīng)分別做成( 。
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,二次函數(shù)y=mx2+3(m-
1
4
)x+4(m<0)與x軸交于A、B兩點(diǎn),(A在B的左邊),與y軸交于點(diǎn)C,且∠ACB=90度.
(1)求這個(gè)二次函數(shù)的解析式;
(2)矩形DEFG的一條邊DG在AB上,E、F分別在BC、AC上,設(shè)OD=x,矩形DEFG的面積為S,求S關(guān)于x的函數(shù)解析式;
(3)將(1)中所得拋物線(xiàn)向左平移2個(gè)單位后,與x軸交于A′、B′兩點(diǎn)(A′在B′的左邊),矩形D′E′F′G′的一條邊D′G′在A′B′上(G′在D′的左邊),E′、F′分別在拋物線(xiàn)上,矩形D′E′F′G′的周長(zhǎng)是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某水果批發(fā)商場(chǎng)銷(xiāo)售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.
(1)現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)每千克水果漲價(jià)多少元時(shí),商場(chǎng)每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案