【題目】如圖,四邊形ABCD是正方形,E,F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且BF=DE,連接AE,AF,EF.
(1)判斷△ABF與△ADE有怎樣的關(guān)系,并說(shuō)明理由;
(2)求∠EAF的度數(shù),寫出△ABF可以由△ADE經(jīng)過(guò)怎樣的圖形變換得到;
(3)若BC=6,DE=2,求△AEF的面積.
【答案】(1)△ABF ≌△ADE,理由詳見(jiàn)解析;(2)△ABF可以由△ADE繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°得到;(3)20.
【解析】
(1)利用正方形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)得出答案;
(2)由于△ADE≌△ABF得∠BAF=∠DAE,則∠BAF+∠BAE=90°,即∠FAE=90°,根據(jù)旋轉(zhuǎn)的定義可得到△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn)90度得到;
(3)首先利用勾股定理求出AE的長(zhǎng),由題意可得AF=AE,∠EAF=90°,再由三角形面積公式得出答案.
(1)△ABF ≌△ADE
理由如下:∵四邊形ABCD是正方形,
∴AB=AD,∠ABC=∠D=90°,
∵點(diǎn)F是CB的延長(zhǎng)線上的點(diǎn),
∴∠ABF=90°,
在△ABF和△ADE中
∴△ABF ≌△ADE(SAS);
(2)∵△ABF ≌△ADE
∴∠BAF=∠DAE,
∵∠DAE+∠EAB=90°,
∴∠BAF+∠EAB=90°,即∠FAE=90°,
∴△ABF可以由△ADE繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°得到;
(3)∵BC=6,
∴AD=6,
在Rt△ADE中,DE=2,AD=6,
∴AE= =
∵△ABF可以由△ADE繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90 度得到,
∴AF=AE=,∠EAF=90°,
∴S△AEF=AFAE=20
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(為常數(shù),)經(jīng)過(guò)點(diǎn),且關(guān)于直線對(duì)稱,是拋物線與x軸的一個(gè)交點(diǎn).有下列結(jié)論:①方程的一個(gè)根是x=-2;②若,則;③若時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,則;④若時(shí),,則.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“機(jī)動(dòng)車行駛到斑馬線要禮讓行人”等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)本次共調(diào)查 名學(xué)生;扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)扇形的圓心角度數(shù)是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有800名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中對(duì)這些交通法規(guī)“非常了解”的有多少名?
(4)通過(guò)此次調(diào)查,數(shù)學(xué)課外實(shí)踐小組的學(xué)生對(duì)交通法規(guī)有了更多的認(rèn)識(shí),學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時(shí)被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某企業(yè)承接了上海世博會(huì)的禮品盒制作業(yè)務(wù),他們購(gòu)得規(guī)格是170cm×40cm的標(biāo)準(zhǔn)板材作為原材料,每張標(biāo)準(zhǔn)板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖1所示,(單位:cm)
(1)列出方程(組),求出圖甲中a與b的值.
(2)若將30張標(biāo)準(zhǔn)板材用裁法一裁剪,4張標(biāo)準(zhǔn)板材用裁法二裁剪,再將得到的A型與B型板材做側(cè)面和底面,做成圖2的豎式與橫式兩種無(wú)蓋禮品盒.
①兩種裁法共產(chǎn)生A型板材 張,B型板材 張;
②做成的豎式和橫式兩種無(wú)蓋禮品盒總數(shù)最多是多少個(gè)?此時(shí)橫式無(wú)蓋禮品盒可以做多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖①,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1,求∠BPC的度數(shù)和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),可得∠AP′B= °,所以∠BPC=∠AP′B= °,還可證得△ABP是直角三角形,進(jìn)而求出等邊三角形ABC的邊長(zhǎng)為 ,問(wèn)題得到解決.
(1)根據(jù)李明同學(xué)的思路填空:∠AP′B= °,∠BPC=∠AP′B= °,等邊三角形ABC的邊長(zhǎng)為 .
(2)探究并解決下列問(wèn)題:如圖③,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,PB=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與y軸交于A點(diǎn),過(guò)點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0).
(1)求直線AB的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng),過(guò)點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N. 設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長(zhǎng)度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問(wèn)對(duì)于所求的t值,平行四邊形BCMN是否菱形?請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+2x+3的圖象交x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)).若把點(diǎn)B向上平移m(m>0)個(gè)單位長(zhǎng)度得點(diǎn)B1,若點(diǎn)B1向左平移n(n>0)個(gè)單位長(zhǎng)度,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n+2)個(gè)單位長(zhǎng)度,將與該二次函數(shù)圖象上的點(diǎn)B3重合.則n的值為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】河南省政府為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),計(jì)劃扶持興建一批新型鋼管裝配式大棚,如圖1所示線段AB、BD分別為大棚的墻高和跨度,AC表示保溫板的長(zhǎng),已知墻高AB為3米,墻面與保溫板所成的角∠BAC=150°,在點(diǎn)D處測(cè)得A點(diǎn)、C點(diǎn)的仰角分別為9°,15.6°,如圖2所示求保溫板AC的長(zhǎng)是多少米?(精確到0.1米)(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28,≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com