精英家教網 > 初中數學 > 題目詳情

【題目】為了加強公民節(jié)水意識,合理利用水資源,某市采用價格調控手段達到節(jié)約用水的目的,規(guī)定:每戶居民每月用水不超過15m3時,按基本價格收費;超過15m3時,不超過的部分仍按基本價格收費,超過的部分要加價收費,該市某戶居民今年4、5月份的用水量和水費如表所示:

月份

用水量/m3

水費/元

4

16

50

5

20

70


(1)求該市居民用水的兩種收費價格;
(2)若該居民6月份交水費80元,那么該居民這個月水量為m3

【答案】
(1)解:設基本水費價格為:x元/m3,超過的部分水費價格為:y元/m3

,

解得: ,

答:基本水費價格為:3元/m3,超過的部分水費價格為:5元/m3


(2)22
【解析】解:(1)解:設基本水費價格為:x元/m3,超過的部分水費價格為:y元/m3,

解得: ,

答:基本水費價格為:3元/m3,超過的部分水費價格為:5元/m3

(2)∵3×15=45<80(元),

∴這個月一定超過15立方米,

則15×2+5(a﹣15)=80,

解得:x=22.

答:這個月該用戶用水22立方米.

所以答案是:(1)基本水費價格為:3元/m3,超過的部分水費價格為:5元/m3;(2)22.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點A,B,與y軸交于點C,其中點A在y軸的左側,點C在x軸的下方,且OA=OC=5.

(1)求拋物線對應的函數解析式;
(2)點P為拋物線對稱軸上的一動點,當PB+PC的值最小時,求點P的坐標;
(3)在(2)條件下,點E為拋物線的對稱軸上的動點,點F為拋物線上的動點,以點P、E、F為頂點作四邊形PEFM,當四邊形PEFM為正方形時,請直接寫出坐標為整數的點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】自4月以來,我市推出了一項“共享單車”的便民舉措,為人們的城市生活出行帶來了方便.圖(1)所示的是某款單車的實物圖.圖(2)是這輛單車的部分幾何示意圖,其中車支架BC的長為20cm,且∠CBA=75°,∠CAB=30°.求車架檔AB的長.(參考數據:sin75°= ,cos75°= ,tan75°=2+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】單詞的記憶效率是指復習一定量的單詞,一周后能正確默寫出的單詞個數與復習的單詞個數的比值.如圖描述了某次單詞復習中小華,小紅小剛和小強四位同學的單詞記憶效率y與復習的單詞個數x的情況,則這四位同學在這次單詞復習中正確默寫出的單詞個數最多的是( 。

A. 小華B. 小紅C. 小剛D. 小強

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.

(1)如圖1,若點O在邊BC上,求證:∠ABC=∠ACB;

(2)如圖2,若點O在△ABC的內部,則∠ABC=∠ACB成立嗎?并說明理由;

(3)若點O在△ABC的外部,則∠ABC=∠ACB成立嗎?請畫圖表示.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】你能求(x1)(x99+x98+x97+…+x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先分別計算下列各式的值:

①(x1)(x+1=x21;

②(x1)(x2+x+1=x31;

③(x1)(x3+x2+x+1=x41;

由此我們可以得到:(x1)(x99+x98+x97+…+x+1=

請你利用上面的結論,再完成下面兩題的計算:

1210+29+28+…+2+1

23n+3n-1+3n-2…+3+1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校舉辦了一次成語知識競賽,滿分10分,學生得分均為整數,成績達到6分及6分以上為合格,達到9分或10分為優(yōu)秀. 為了解本次大賽的成績,校團委隨機抽取了甲、乙兩組學生成績作為樣本進行統(tǒng)計,繪制了如下統(tǒng)計圖表:

組別

平均數

中位數

方差

合格率

優(yōu)秀率

甲組

6.8

a

3.76

90%

30%

乙組

b

7.5

1.96

80%

20%

1)求出表中ab的值;

2)小英同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面的表格判斷,小英屬于哪個組?

3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組. 但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你寫出兩條支持乙組同學觀點的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的證明過程:

如圖所示,直線ADAB,CD分別相交于點A,D,與EC,BF分別相交于點H,G,已知∠1=∠2,∠B=∠C

求證:∠A=∠D

證明:∵∠1=∠2,(已知)∠2=∠AGB   

∴∠1      

ECBF   

∴∠B=∠AEC   

又∵∠B=∠C(已知)

∴∠AEC      

      

∴∠A=∠D   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:

港珠澳大橋是世界上最長的跨海大橋,是被譽為“現代世界七大奇跡”的超級工程,它是我國從橋梁大國走向橋梁強國的里程碑之作.開通后從香港到珠海的車程由原來的180千米縮短到50千米,港珠澳大橋的設計時速比按原來路程行駛的平均時速多40千米,若開通后按設計時速行駛,行駛完全程時間僅為原來路程行駛完全程時間的,求港珠澳大橋的設計時速是多少.

查看答案和解析>>

同步練習冊答案