精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.

(1)試判斷直線DECF的位置關系,并說明理由;

(2)若∠A=30°,AB=4,求的長.

【答案】(1)見解析;(2).

【解析】

1)先證明OAC≌△ODC,得出∠1=2,則∠2=4,故OCDE,即可證得DECF;

(2)根據OA=OC得到∠2=3=30°,故∠COD=120°,再根據弧長公式計算即可.

解:(1)DECF.

理由如下:

CF為切線,

OCCF,

CA=CD,OA=OD,OC=OC,

∴△OAC≌△ODC,

∴∠1=2,

而∠A=4,

∴∠2=4,

OCDE,

DECF;

(2)OA=OC,

∴∠1=A=30°,

∴∠2=3=30°,

∴∠COD=120°,

的長==π.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,長方形ABCD(每個內角都是90°)的頂點的坐標分別是A0m),Bn,0),(mn0),點EAD上,AEAB,點Fy軸上,OFOB,BF的延長線與DA的延長線交于點M,EFAB交于點N

1)試求點E的坐標(用含mn的式子表示);

2)求證:AMAN

3)若ABCD12cm,BC20cm,動點PB出發(fā),以2cm/s的速度沿BCC運動的同時,動點QC出發(fā),以vcm/s的速度沿CDD運動,是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請求出v值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】不透明的袋子中裝有個相同的小球,它們除顏色外無其它差別,把它們分別標號:、、、

隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標號相同”的概率

隨機摸出兩個小球,直接寫出“兩次取出的球標號和等于”的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在10×10的正方形網格中,每個小正方形的邊長都為1,網格中有一個格點△ABC(即三角形的頂點都在格點上).

(1)在圖中作出△ABC關于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應)

(2)在(1)問的結果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2018422日是第49個世界地球日,今年的主題為珍惜自然資源呵護美麗國土一講好我們的地球故事地球日活動周中,同學們開展了豐富多彩的學習活動,某小組搜集到的數據顯示,山西省總面積為15.66萬平方公里,其中土石山區(qū)面積約5.59萬平方公里,其余部分為丘陵與平原,丘陵面積比平原面積的2倍還多0.8萬平方公里.

(1)求山西省的丘陵面積與平原面積;

(2)活動周期間,兩位家長計劃帶領若干學生去參觀山西地質博物館,他們聯系了兩家旅行社,報價均為每人30元.經協商,甲旅行社的優(yōu)惠條件是,家長免費,學生都按九折收費;乙旅行社的優(yōu)惠條件是,家長、學生都按八折收費.若只考慮收費,這兩位家長應該選擇哪家旅行社更合算?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);

(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.

(1)求拋物線的表達式;

(2)設拋物線的對稱軸為l,lx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

(3)如圖2,連接BC,PB,PC,設PBC的面積為S.

①求S關于t的函數表達式;

②求P點到直線BC的距離的最大值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,拋物線經過點,且與軸交于,兩點,與軸交于點,連接,,

該拋物線的解析式;

如圖,點是所求拋物線上的一個動點,過點軸的垂線分別交軸于點,交直線于點,設點的橫坐標為,當時,過點,軸于點,連接,則為何值時,的面積取得最大值,并求出這個最大.

如圖,中,,,,直角邊軸上,且重合,當沿軸從右向左以每秒個單位長度的速度移動時,設重疊部分的面積為,求當時,移動的時間

查看答案和解析>>

同步練習冊答案