【題目】如圖,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.
(1)試說(shuō)明:AB∥CD;
(2)H是BE的延長(zhǎng)線(xiàn)與直線(xiàn)CD的交點(diǎn),BI平分∠HBD,寫(xiě)出∠EBI與∠BHD的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2)∠EBI=∠BHD,理由詳見(jiàn)解析.
【解析】試題分析:(1)根據(jù)角平分線(xiàn)的定義可得∠ABD=2∠EBD,∠BDC=2∠BDE,然后求出∠ABD+∠BDC=180°,再根據(jù)同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行證明;
(2)由AB∥CD,得到∠ABH=∠BHD,再由BI平分∠EBD,BH平分∠ABD,即可得出結(jié)論.
試題解析:
(1)證明:∵BE平分∠ABD,DE平分∠BDC,
∴∠ABD=2∠EBD,∠BDC=2∠BDE,
∵∠EBD+∠EDB=90°,
∴∠ABD+∠BDC=2×90°=180°,
∴AB∥CD;
(2)∠EBI=∠BHD. 理由如下:
因?yàn)?/span>AB∥CD,
所以∠ABH=∠BHD.
因?yàn)?/span>BI平分∠EBD,BH平分∠ABD,
所以∠EBI=∠EBD=∠ABH=∠BHD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
一般地,n個(gè)相同的因數(shù)a相乘記為an,記為an.如2×2×2=23=8,此時(shí),3叫做以2為底8的對(duì)數(shù),記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對(duì)數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對(duì)數(shù),記為log381(即log381=4).
(1)計(jì)算以下各對(duì)數(shù)的值:
log24= ,log216= ,log264= .
(2)觀(guān)察(1)中三數(shù)4、16、64之間滿(mǎn)足怎樣的關(guān)系式,log24、log216、log264之間又滿(mǎn)足怎樣的關(guān)系式 。
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?
logaM+logaN= ;(a>0且a≠1,M>0,N>0)
(4)根據(jù)冪的運(yùn)算法則:anam=an+m以及對(duì)數(shù)的含義證明上述結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E,F分別是AB,CD上的點(diǎn),點(diǎn)G是BC的延長(zhǎng)線(xiàn)上一點(diǎn),且∠B=∠DCG=∠D,則下列判斷中,錯(cuò)誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于點(diǎn)G。
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y1=kx+b的圖像經(jīng)過(guò)點(diǎn)(0,-2),(2,2).
(1)求一次函數(shù)的表達(dá)式,并在所給直角坐標(biāo)系中畫(huà)出此函數(shù)的圖像;;
(2)根據(jù)圖像回答:當(dāng)x 時(shí),y1=0;
(3)求直線(xiàn)y1=kx+b、直線(xiàn)y2=-2x+4與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說(shuō)明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于點(diǎn)G。
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形的頂點(diǎn)A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個(gè)單位”為一次変換,如果這樣連續(xù)經(jīng)過(guò)2016次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上,連接BE、CE.
(1)求證:BE=CE
(2)如圖2,若BE的延長(zhǎng)線(xiàn)交AC于點(diǎn)F,且BF ⊥AC,垂足為F,原題設(shè)其它條件不變.求證:∠CAD=∠CBF
(3)在(2)的條件下,若∠BAC=45,判斷△CFE的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com