【題目】隨著社會(huì)經(jīng)濟(jì)的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學(xué)興趣小組隨機(jī)抽取了我市某單位部分職工進(jìn)行調(diào)查,對(duì)職工購(gòu)車情況分4類(A:車價(jià)40萬(wàn)元以上;B:車價(jià)在20—40萬(wàn)元;C:車價(jià)在20萬(wàn)元以下;D:暫時(shí)未購(gòu)車)進(jìn)行了統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)調(diào)查樣本人數(shù)為__________,樣本中B類人數(shù)百分比是_______,其所在扇形統(tǒng)計(jì)圖中的圓心角度數(shù)是________;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該單位甲、乙兩個(gè)科室中未購(gòu)車人數(shù)分別為2人和3人,現(xiàn)從中選2人去參觀車展,用列表或畫(huà)樹(shù)狀圖的方法,求選出的2人來(lái)自不同科室的概率.
【答案】(1)50,20%,72°.
(2)圖形見(jiàn)解析;
(3)選出的2人來(lái)自不同科室的概率=.
【解析】
試題(1)根據(jù)調(diào)查樣本人數(shù)=A類的人數(shù)除以對(duì)應(yīng)的百分比.樣本中B類人數(shù)百分比=B類人數(shù)除以總?cè)藬?shù),B類人數(shù)所在扇形統(tǒng)計(jì)圖中的圓心角度數(shù)=B類人數(shù)的百分比×360°.
(2)先求出樣本中B類人數(shù),再畫(huà)圖.
(3)畫(huà)樹(shù)狀圖并求出選出的2人來(lái)自不同科室的概率.
試題解析:(1)調(diào)查樣本人數(shù)為4÷8%=50(人),
樣本中B類人數(shù)百分比(50﹣4﹣28﹣8)÷50=20%,
B類人數(shù)所在扇形統(tǒng)計(jì)圖中的圓心角度數(shù)是20%×360°=72°;
(2)如圖,樣本中B類人數(shù)=50﹣4﹣28﹣8=10(人)
;
(3)畫(huà)樹(shù)狀圖為:
共有20種可能的結(jié)果數(shù),其中選出選出的2人來(lái)自不同科室占12種,
所以選出的2人來(lái)自不同科室的概率=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過(guò)B點(diǎn)作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點(diǎn)坐標(biāo);
(2)如圖2,若P點(diǎn)從A點(diǎn)出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點(diǎn)共線,求此時(shí)P點(diǎn)坐標(biāo)及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ中PQ的長(zhǎng)度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時(shí),△PBQ有最大面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀理解)
截長(zhǎng)補(bǔ)短法,是初中數(shù)學(xué)兒何題中一種輸助線的添加方法,截長(zhǎng)就是在長(zhǎng)邊上載取一條線段與某一短邊相等,補(bǔ)短是通過(guò)在一條短邊上延長(zhǎng)一條線段與另一短邊相等,從而解決問(wèn)題.
(1)如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC下方一點(diǎn),∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.
解題思路:延長(zhǎng)DC到點(diǎn)E,使CE=BD.連接AE,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE,易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數(shù)量關(guān)系.
根據(jù)上述解題思路,請(qǐng)直接寫(xiě)出DA、DB、DC之間的數(shù)量關(guān)系是___________
(拓展延伸)
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點(diǎn)D是邊BC下方一點(diǎn),∠BDC=90°,探索線段DA、DB、DC之間的數(shù)量關(guān)系,并說(shuō)明理由;
(知識(shí)應(yīng)用)
(3)如圖3,一副三角尺斜邊長(zhǎng)都為14cm,把斜邊重疊擺放在一起,則兩塊三角尺的直角項(xiàng)點(diǎn)之間的距離PQ的長(zhǎng)為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為元的籃球,如果以單價(jià)元出售,那么每月可售出個(gè),根據(jù)銷售經(jīng)驗(yàn),售價(jià)每提高元,銷售量相應(yīng)減少個(gè);
某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為元的籃球,如果以單價(jià)元出售,那么每月可售出個(gè),根據(jù)銷售經(jīng)驗(yàn),售價(jià)每提高元,銷售量相應(yīng)減少個(gè);
假設(shè)銷售單價(jià)提高元,那么銷售每個(gè)籃球所獲得的利潤(rùn)是________元;這種籃球每月的銷售量是________個(gè);(用含的代數(shù)式表示)
若商店準(zhǔn)備獲利元,則銷售定價(jià)為多少元?商店應(yīng)進(jìn)貨多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立一次函數(shù)關(guān)系解決問(wèn)題:甲、乙兩校為了綠化校園,甲校計(jì)劃購(gòu)買A種樹(shù)苗,A種樹(shù)苗每棵24元;乙校計(jì)劃購(gòu)買B種樹(shù)苗,B種樹(shù)苗每棵18元.兩校共購(gòu)買了35棵樹(shù)苗.若購(gòu)進(jìn)B種樹(shù)苗的數(shù)量少于A種樹(shù)苗的數(shù)量,請(qǐng)給出一種兩?傎M(fèi)用最少的方案,并求出該方案所需的總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過(guò)點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com