【題目】如圖①,△ABC中, BD平分∠ABC,且與△ABC的外角∠ACE的角平分線交于點D

(1)若,求∠D的度數(shù);

2)若把∠A截去,得到四邊形MNCB,如圖②,猜想∠D、∠M、∠N的關(guān)系,并說明理由.

【答案】(1)(2) 或?qū)懗?/span>

【解析】(1).根據(jù)角平分線的定義可得∠DBC=37.5°,根據(jù)鄰補角定義以及角平分線定義求得∠DCA的度數(shù)為67.5°,最后根據(jù)三角形內(nèi)角和定理即可求得∠D的度數(shù);(2).由四邊形內(nèi)角和與角平分線性質(zhì)即可求解.

本題解析: (1)∵BD平分∠ABC,

∴∠CBD=∠ABC=×75°=37.5°,

∵CD平分△ABC的外角,

∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,

∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°;

(2) ∵∠M+∠N+∠CBM+∠NCB=360°,

∴∠D=180°-∠CBM-∠NCB-∠NCE=180°-(360°-∠NCB-∠M-∠N)- ∠NCB-∠NCE=180°-180°+∠NCB+∠M+∠N-∠NCB-∠NCE=∠M+∠N-∠NCB-∠NCE=,或?qū)懗?/span>.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A.如果銳角三角形的一個內(nèi)角是60°,那么這個銳角三角形是等邊三角形

B.三角形的角平分線就是三角形內(nèi)角的平分線

C.直角三角形的斜邊的長度大于兩條直角邊長度的和

D.任何三角形的高必相交于一點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要得到ABCD,只需要添加一個條件,這個條件不可以( )

A. 1=3 B. BBCD=180°

C. 2=4 D. DBAD=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點ABCDEF(頂點為網(wǎng)格線的交點),以及過格點的直線l.

①將ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形A’B’C’;

②畫出DEF關(guān)于直線l對稱的三角形D’E’F’;

③填空:∠C+E=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△ABC′,圖中標出了點B的對應點B′.

(1)在給定方格紙中畫出平移后的△ABC′;

利用網(wǎng)格點和三角板畫圖或計算:

(2)畫出AB邊上的中線CD;

(3)畫出BC邊上的高線AE;

(4)△ABC′的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點EBC上,CDABEFAB,垂足分別為DF

(1)CDEF平行嗎?為什么?

(2)如果∠1=2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBCD,BD=ADDG=DC,E,F分別是BG,AC的中點.

1)求證:DE=DF,DEDF

2)連接EF,若AC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,CF∥AB.

(1)∠FCD的度數(shù);

(2)求證:AF∥CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉辦以“保護環(huán)境,治理霧霾,從我做起”為主題的演講比賽,現(xiàn)將所有比賽成績(得分取整數(shù),滿分為100)進行整理后分為5組,并繪制成如圖所示的頻數(shù)直方圖.根據(jù)頻數(shù)分布直方圖提供的信息,下列結(jié)論:①參加比賽的學生共有52人;②比賽成績?yōu)?/span>65分的學生有12人;③比賽成績的中位數(shù)落在70.580.5分這個分數(shù)段;④如果比賽成績在80分以上(不含80)可以獲得獎勵,則本次比賽的獲獎率約為30.8%.正確的是________(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

同步練習冊答案