【題目】如圖,在平面直角坐標系中,正方形中心在原點,且頂點的坐標為.動點分別從點同時出發(fā),繞著正方形的邊按順時針方向運動,當點回到點時兩點同時停止運動,運動時間為秒.連接,線段、與正方形的邊圍成的面積較小部分的圖形記為.
(1)請寫出點的坐標.
(2)若的速度均為1個單位長度秒,試判斷在運動過程中,的面積是否發(fā)生變化,如果不變求出該值,如果變化說明理由.
(3)若點速度為2個單位長度秒,點為1個單位長度/秒,當的面積為時,求的值.
【答案】(1),,;(2)不變,理由詳見解析;(3)或
【解析】
(1)利用正方形的性質(zhì),結(jié)合B、C、D的位置寫出坐標即可;
(2)只要證明△OAP≌△OBQ,可得S△OAP=S△OBQ,推出SM=S△OAB= S正方形ABCD=1;
(3)分兩種情形:①當點P在線段AB上,點Q在線段BC上時,②當點P、Q在CD上時,分別構(gòu)建方程即可解決問題;
解:(1)由題意B(1,1),C(1,1),D(1,1);
(2)M的面積不發(fā)生變化.
理由:如圖,連接OA、OB.
∵四邊形ABCD是正方形,O是正方形的中心,
∴OA=OB,∠OAP=∠OBQ=45°,
∵AP=BQ,
∴△OAP≌△OBQ,
∴S△OAP=S△OBQ,
∴SM=S△OAB= S正方形ABCD=1,
∴M的面積S是定值,定值為1.
(3)①當點P在線段AB上,點Q在線段BC上時,連接OB,
由題意得:SM=S△OBP+ S△OBQ=,即(22t)1+t1=,
解得t=;
②當點P、Q在CD上時,
由題意得:SM=S△OPQ=,即(2tt1)·1=,
解得t=,
綜上所述,t=或時,M的面積為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰中,,,于點,點是延長線一點,點是線段上一點,.
(1)已知,求的度數(shù);
(2)求證:是等邊三角形;
(3)求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6元/件,售價是8元/件,年銷售量為5萬件.為了獲得更好的效益,公司準備拿出一定的資金做廣告,根據(jù)經(jīng)驗,每年投入的廣告費是x萬元,產(chǎn)品的年銷售量將是原銷售量的y倍,且y與x之間滿足我們學過的二種函數(shù)(即一次函數(shù)和二次函數(shù))關系中的一種,它們的關系如下表:
x(萬元) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y | 1 | 1.275 | 1.5 | 1.675 | 1.8 | … |
(1)求y與x的函數(shù)關系式(不要求寫出自變量的取值范圍)
(2)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤W(萬元)與廣告費用x(萬元)的函數(shù)關系式,并計算每年投入的廣告費是多少萬元時所獲得的利潤最大?
(3)如果公司希望年利潤W(萬元)不低于14萬元,請你幫公司確定廣告費的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了測量某風景區(qū)內(nèi)一座塔AB的高度,某人分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度。(結(jié)果精確到0.1m)(參考數(shù)據(jù)≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年6月22日至7月2日,11天湖南地區(qū)持續(xù)降大到暴雨,總量達570億立方米的雨水從天而降,傾瀉到三湘大地,全省14個市州120個縣(市、區(qū))1621個多鎮(zhèn)受災,現(xiàn)有三批救災物資從長沙岀發(fā)送往某受災鄉(xiāng)鎮(zhèn),前兩批物資運貨情況如圖所示:
火車皮(單位:節(jié)) | 汽車(單位:輛) | 物質(zhì)重量(單位:噸) | |
第一批 | 4 | 16 | 264 |
第二批 | 6 | 10 | 340 |
(1)每節(jié)火車皮和每輛汽車平均各能裝多少噸物資?
(2)已知火車皮的裝運費為30元噸,汽車的裝運費為100元/噸.若第三批救災物資需要5節(jié)火車皮和15輛汽車正好裝完,共需要裝運費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點A,D在x軸的正半軸,點C在y軸的正半軸上,點F再AB上,點B,E在反比例函數(shù)y=的圖象上,OA=2,OC=6,則正方形ADEF的邊長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB⊥直線l于點B,點M在直線l上,分別以AB、AM為邊作等邊△ABC和等邊△AMN,直線CN交直線l于點D.
(1)當點M在AB右側(cè)時,如圖①,試探索線段CN、CD、DM的數(shù)量關系,并說明理由;
(2)當點M在AB左側(cè)時,如圖②,(1)中線段CN、CD、DM的數(shù)量關系仍然成立嗎?若不成立,寫出新的數(shù)量關系;
(3)若BM=2BD,DN=9,則CD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形ABCDEF是邊長為2 cm的螺母,點P是FA延長線上的點,在A,P之間拉一條長為12 cm的無伸縮性細線,一端固定在點A,握住另一端點P拉直細線,把它全部緊緊纏繞在螺母上(纏繞時螺母不動),則點P運動的路徑長為( )
A. 13π cm B. 14π cm C. 15π cm D. 16π cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,P是射線BD上一動點,以AP為邊向右側(cè)作等邊△APE,連接CE.
(1)如圖1,當點P在菱形ABCD內(nèi)部時,則BP與CE的數(shù)量關系是 ,CE與AD的位置關系是 .
(2)如圖2,當點P在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;
(3)如圖2,連接BE,若AB=2,BE=2,求AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com