【題目】某校在開(kāi)學(xué)期間,打算購(gòu)置一批辦公桌和椅子,現(xiàn)在同一款式的辦公桌每張定價(jià)200元,椅子每張40.國(guó)慶節(jié)期間,有兩個(gè)商店決定開(kāi)展促銷(xiāo)活動(dòng),活動(dòng)期間向客戶提供優(yōu)惠如下:

甲商店:買(mǎi)一張辦公桌送一張椅子;

乙商店:辦公桌和椅子都按定價(jià)的九折付款.

現(xiàn)在學(xué)校要購(gòu)買(mǎi)20張辦公桌和張椅子(.

1)用含的代數(shù)式表示學(xué)校分別在這兩個(gè)商店購(gòu)買(mǎi)這一批桌椅所需的費(fèi)用;

2)購(gòu)買(mǎi)椅子多少?gòu)垥r(shí),兩個(gè)商店的費(fèi)用相等?

3)現(xiàn)在學(xué)校要購(gòu)買(mǎi)30張椅子,通過(guò)計(jì)算說(shuō)明選擇在哪個(gè)商店購(gòu)買(mǎi)較為合算.

【答案】1)甲商店費(fèi)用:,乙商店費(fèi)用:;(2100;(3)選擇甲商店,理由見(jiàn)解析.

【解析】

1)根據(jù)題意即可列出代數(shù)式;

2)令兩個(gè)代數(shù)式相等即可求解;

3)把x=30代入即可求解比較.

:1)甲商店所需的費(fèi)用:

乙商店所需的費(fèi)用:

2)依題意得

解得,

3)當(dāng)時(shí)

甲商店所需的費(fèi)用:(元)

乙商店所需的費(fèi)用:(元)

選擇甲商店

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,H在CD的延長(zhǎng)線上,四邊形CEFH也為正方形,則△DBF的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.圓內(nèi)接正六邊形的邊長(zhǎng)與該圓的半徑相等
B.在平面直角坐標(biāo)系中,不同的坐標(biāo)可以表示同一點(diǎn)
C.一元二次方程ax2+bx+c=0(a≠0)一定有實(shí)數(shù)根
D.將△ABC繞A點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADE,則△ABC與△ADE不全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖是用4個(gè)全等的長(zhǎng)方形拼成的一個(gè)“回形”正方形,圖中陰影部分面積用2種方法表示可得一個(gè)等式,這個(gè)等式為_______

(2)(4xy)2=9(4x+y)2=169,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長(zhǎng)分別是20、30、40,其三條角平分線將△ABC分為三個(gè)三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,(1)∠BED與∠CBE是直線________________被直線________所截形成的________角;

(2)∠A與∠CED是直線________________被直線________所截形成的________角;

(3)∠CBE與∠BEC是直線________________被直線________所截形成的________角;

(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線AMBN,點(diǎn)E,F,D在射線AM上,點(diǎn)C在射線BN上,且∠BCD=∠ABE平分∠ABF,BD平分∠FBC.

(1)求證:ABCD.

(2)如果平行移動(dòng)CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個(gè)角的比值.

(3)如果∠A100°,那么在平行移動(dòng)CD的過(guò)程中,是否存在某一時(shí)刻,使∠AEB=∠BDC?若存在,求出此時(shí)∠AEB的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程|x1||x2|5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊,若x對(duì)應(yīng)點(diǎn)在1的右邊,由圖可以看出x2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3,故原方程的解是x2x=-3.

參考閱讀材料,解答下列問(wèn)題:

(1)方程|x3|4的解為________

(2)解不等式|x3||x4|≥9;

(3)|x3||x4|≥a對(duì)任意的x都成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案