【題目】如圖,矩形ABCD中,點E在邊CD上,將△BCE沿BE折疊,點C落在AD邊上的點F處,過點F作FG∥CD交BE于點G,連接CG.
(1)求證:四邊形CEFG是菱形;
(2)若AB=6,AD=10,求四邊形CEFG的面積.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)題意和翻折的性質(zhì),可以得到△BCE≌△BFE,再根據(jù)全等三角形的性質(zhì)和菱形的判定方法即可證明結(jié)論成立;
(2)根據(jù)題意和勾股定理,可以求得AF的長,進(jìn)而求得EF和DF的值,從而可以得到四邊形CEFG的面積.
(1)證明:由題意可得,△BCE≌△BFE,
∴∠BEC=∠BEF,FE=CE,
∵FG∥CE,
∴∠FGE=∠CEB,
∴∠FGE=∠FEG,
∴FG=FE,
∴FG=EC,
∴四邊形CEFG是平行四邊形,
又∵CE=FE,
∴四邊形CEFG是菱形;
(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,
∴∠BAF=90°,AD=BC=BF=10,
∴AF=8,
∴DF=2,
設(shè)EF=x,則CE=x,DE=6﹣x,
∵∠FDE=90°,
∴22+(6﹣x)2=x2,
解得,x=,
∴CE=,
∴四邊形CEFG的面積是:CEDF=×2=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖要求: I、過直線外一點作這條直線的垂線: II、 作線段的垂直平分線;III、過直線上一點作這條直線的垂線: IV、 作角的平分線.如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對是( )
A.①-IV,②-II,③-I,④-IIIB.①-IV, ②-I,③-II,④-I
C.①-II,②-IV,③-1II,④-ID.①-IV,②-I,③-II,④-III
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,E是AD上的一個動點
(1)如圖 1,連接 BD,O 是對角線 BD 的中點,連接 OE.當(dāng) OE=DE 時,求 AE 的長;
(2)如圖 2,連接 BE,EC,過點 E 作 EF⊥EC 交 AB 于點 F,連接 CF,與 BE 交于點 G.當(dāng)BE 平分∠ABC 時,求 BG 的長;
(3)如圖 3,連接 EC,點 H 在 CD 上,將矩形 ABCD 沿直線 EH 折疊,折疊后點 D 落在 EC上的點 D′處,過點 D′作 D′N⊥AD 于點 N,與 EH 交于點 M,且 AE=1.的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅樹林學(xué)校在七年級新生中舉行了全員參加的“防溺水”安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分?jǐn)?shù) 人數(shù) 班級 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個班的成績比較好?請說明理由;
(3)為了讓學(xué)生重視安全知識的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎狀,該校七年級新生共570人,試估計需要準(zhǔn)備多少張獎狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點O為圓心,OA為半徑作弧交AB于點A、點C,交OB于點D,若OA=3,則陰影都分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點分別在軸的負(fù)半軸、軸的正半軸上,點在第二象限.將矩形繞點順時針旋轉(zhuǎn),使點落在軸上,得到矩形與相交于點.若經(jīng)過點的反比例函數(shù)的圖象交于點的圖象交于點則的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點D在底邊BC上,且∠DAC=∠ACD,將△ACD沿著AD所在直線翻折,使得點C落到點E處,聯(lián)結(jié)BE,那么BE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》內(nèi)容主要講數(shù)學(xué)的用途,淺顯易懂,其中有許多有趣的數(shù)學(xué)題,如“河邊洗碗”.原文:今有婦人河上蕩桮.津吏問曰:“桮何以多?“婦人曰:“家有客.”津吏曰:“客幾何?”婦人日:“二人共飯,三人共羹,四人共肉,凡用桮六十五.不知客幾何?“譯文:有一名婦女在河邊洗刷一大摞碗.一個津吏問她:“怎么刷這么多碗呢?“她回答:“家里來客人了.“津吏又問:“家里來了多少客人?”婦女答道:“2個人給一碗飯,3個人給一碗湯,4個人給一碗肉,一共要用65只碗,來了多少客人?”答:共有_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖①,一次函數(shù) y= x - 2 的圖像交 x 軸于點 A,交 y 軸于點 B,二次函數(shù) y= x2 bx c的圖像經(jīng)過 A、B 兩點,與 x 軸交于另一點 C.
(1)求二次函數(shù)的關(guān)系式及點 C 的坐標(biāo);
(2)如圖②,若點 P 是直線 AB 上方的拋物線上一點,過點 P 作 PD∥x 軸交 AB 于點 D,PE∥y 軸交 AB 于點 E,求 PD+PE 的最大值;
(3)如圖③,若點 M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點 M的坐標(biāo).
① ② ③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com