【題目】如圖,在△ABC中,∠B=90°,點B、C、D在同一直線上,△ABC≌△CDE,且∠B=∠D,∠BAC=∠DCE.
(1)試說明BD=AB+ED;
(2)若∠CED=2∠BAC,求∠CED的度數(shù);
(3)連接AE,則△ACE是怎樣的三角形?說明理由.
【答案】(1)詳見解析;(2)60°;(3)△ACE是等腰直角三角形,理由詳見解析.
【解析】
(1)根據(jù)全等三角形的性質(zhì)即可求解;
(2)根據(jù)全等三角形的性質(zhì)得到∠ACB=∠CED,再根據(jù)直角三角形的性質(zhì)得到∠BAC+∠ACB=90°,根據(jù)已知條件∠CED=2∠BAC,可求出∠BAC=30°,即可得到∠CED=60°.
(3)根據(jù)全等三角形的性質(zhì)即可得到AC⊥CE,AC=CE,故可求解.
(1)∵ △ABC≌△CDE,
∴ AB=CD,BC=DE.
∴ AB+ED=BC+CD=BD. 即BD=AB+ED.
(2)∵ △ABC≌△CDE,
∴ ∠ACB=∠CED.
在△ABC中,∠B=90°,
∴ ∠BAC+∠ACB=90°.
∵ ∠CED=2∠BAC,
∴ 3∠BAC=90°,
∴ ∠BAC=30°,
∴ ∠CED=60°.
(3)△ACE是等腰直角三角形.
∵ ∠ACD是△ABC的一個外角,
∴ ∠ACD=∠BAC+∠B,即∠ACE+∠DCE=∠BAC+∠B.
∵ ∠BAC=∠DCE,∠B=90°,
∴ ∠ACE=90°.
∵ △ABC≌△CDE,
∴ AC=CE,
∴ △ACE是等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點的初始位置位于數(shù)軸上表示的點,現(xiàn)對點做如下移動:第次向左移動個單位長度至點,第次從點向右移動個單位長度至點,第次從點向左移動個單位長度至點,第次從點向右移動個單位長度至點,…,依此類推。這樣第_____次移動到的點到原點的距離為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖①中的正方形剪開得到圖②,圖②中共有4個正方形;將圖②中一個正方形剪開得到圖③,圖③中共有7個正方形;將圖③中一個正方形剪開得到圖④,圖④中共有10個正方形……如此下去,則第2019個圖中共有正方形的個數(shù)為( )
A.2019B.2021C.6049D.6055
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)求甲種商品與乙種商品的銷售單價;
(2)設(shè)銷售甲種商品a萬件.
① 甲、乙兩種商品的銷售總收入為 萬元(用含a的代數(shù)式表示);
② 若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校九年級舉行乒乓球比賽,準(zhǔn)備發(fā)放一些獎品進(jìn)行獎勵,獎品設(shè)為一等獎和二等獎.已知購買一個一等獎獎品比購買一個二等獎獎品多用20元.若用400元購買一等獎獎品的個數(shù)是用160元購買二等獎獎品個數(shù)的一半.
(1)求購買一個一等獎獎品和一個二等獎獎品各需多少元?
(2)經(jīng)商談,商店決定給予該學(xué)校購買一個一等獎獎品即贈送一個二等獎獎品的優(yōu)惠,如果該學(xué)校需要二等獎獎品的個數(shù)是一等獎獎品個數(shù)的2倍還多8個,且該學(xué)校購買兩個獎項獎品的總費用不超過670元,那么該學(xué)校最多可購買多少個一等獎獎品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵遞員騎摩托車從郵局出發(fā),先向東騎行2km到達(dá)A村,繼續(xù)向東騎行3km到達(dá)B村,然后向西騎行9km到C村,最后回到郵局.
(1)以郵局為原點,以向東方向為正方向,用1個單位長度表示1km,請你在數(shù)軸上表示出A、B、C三個村莊的位置;
(2)C村離A村有多遠(yuǎn)?
(3)若摩托車每1km耗油0.03升,這趟路共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB∥CD,直線l與直線AB、CD相交于點E、F,P是射線EA上的一個動點(不包括端點E),將△EFP沿PF折疊,便頂點E落在點Q處.若∠PEF=54°,且∠CFQ=∠CFP,則∠PFE的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中有正方形EDFC,由圖(1)通過三角形的旋轉(zhuǎn)變換可以得到圖(2).觀察圖形的變換方式,若AD=3,DB=4,則圖(1)中△ADE和△BDF面積之和S為_____.正方形EDFC的面積為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察如圖圖形,它是按一定規(guī)律排列的,根據(jù)圖形所揭示的規(guī)律我們可以發(fā)現(xiàn):第1個圖形十字星與五角星的個數(shù)和為7,第2個圖形十字星與五角星的個數(shù)和為10,第3個圖形十字星與五角星的個數(shù)和為13,按照這樣的規(guī)律.則第9個圖形中,十字星與五角星的個數(shù)和為( )
A.28B.29C.31D.32
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com