【題目】Rt△ABC中,BC=9, CA=12∠ABC的平分線BDAC與點(diǎn)D, DE⊥DBAB于點(diǎn)E

1)設(shè)⊙O△BDE的外接圓,求證:AC⊙O的切線;

2)設(shè)⊙OBC于點(diǎn)F,連結(jié)EF,求的值.

【答案】1)見(jiàn)詳解;

2

【解析】

1)因?yàn)辄c(diǎn)D⊙O上,所以只要連結(jié)圓心和圓上這點(diǎn),證明ODAC垂直即可.

利用角平分線、等腰三角形、直角三角形兩銳角互余,完成證明.

2)利用勾股定理求得AB的長(zhǎng).;利用△ADO∽△ACB對(duì)應(yīng)線段成比例求得BE的長(zhǎng);利用△BEF∽△BAC=,從而問(wèn)題得解.

1)證明:由已知DEDB,⊙ORtBDE的外接圓,

BE是⊙O的直徑,點(diǎn)OBE的中點(diǎn),連結(jié)OD,

,∴

又∵BD為∠ABC的平分線,∴

,∴

,即∴

又∵OD是⊙O的半徑,

AC是⊙O的切線.

2 解:設(shè)⊙O的半徑為r RtABC中,

,,∴△ADO∽△ACB

.∴

.∴

又∵BE是⊙O的直徑.∴.∴△BEF∽△BAC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)素質(zhì)教育要求,促進(jìn)學(xué)生全面發(fā)展,我市某中學(xué)2016年投資11萬(wàn)元新增一批電腦,計(jì)劃以后每年以相同的增長(zhǎng)率進(jìn)行投資,2018年投資18.59萬(wàn)元.

1)求該學(xué)校為新增電腦投資的年平均增長(zhǎng)率;

2)從2016年到2018年,該中學(xué)三年為新增電腦共投資多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,對(duì)稱(chēng)軸是直線.在以下四個(gè)結(jié)論中,正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;

(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果公司以22元/千克的成本價(jià)購(gòu)進(jìn)1000kg蘋(píng)果,公司想知道蘋(píng)果的損壞率,隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如下表:

草果總質(zhì)量nkg

100

200

300

400

500

1000

損壞蘋(píng)果質(zhì)量mkg

10.60

19.42

30.63

39.24

49.54

101.10

蘋(píng)果損壞的頻率

(結(jié)果保留小數(shù)點(diǎn)后三位)

0.106

0.097

0.102

0.098

0.099

0.101

根據(jù)此表估計(jì)這批蘋(píng)果損壞的概率(精確到0.1),從而計(jì)算該公司希望這批蘋(píng)果能獲得利潤(rùn)23000元,則銷(xiāo)售時(shí)(去掉損壞的蘋(píng)果)售價(jià)應(yīng)至少定為_____/千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰ABC中,ABAC4cm,∠B30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BAAC方向運(yùn)動(dòng)到點(diǎn)C停止,若BPQ的面積為ycm2),運(yùn)動(dòng)時(shí)間為xs),則下列最能反映yx之間函數(shù)關(guān)系的圖象是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙OAC于點(diǎn)D,過(guò)點(diǎn)DDE⊥BC于點(diǎn)E,且∠BDE=∠A

1)判斷DE⊙O的位置關(guān)系,并說(shuō)明理由;

2)若AC=16,tanA=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦EFAB,垂足為C,∠A30°,連結(jié)BE,MBE的中點(diǎn),連結(jié)MF,過(guò)點(diǎn)F作直線FDAE,交AB的延長(zhǎng)線于點(diǎn)D

1)求證:FD是⊙O的切線;

2)若MF,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓銷(xiāo)售價(jià)格相同,“春節(jié)期間”,兩家采摘園將推岀優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買(mǎi)門(mén)票,采摘的草莓六折優(yōu)惠:乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘園的草莓按售價(jià)付款,優(yōu)惠期間,設(shè)游客的草莓采摘量為x(千克),在甲園所需總費(fèi)用為y(元),在乙園所需總費(fèi)用為y元,yyx之間的函數(shù)關(guān)系如圖所示.

1)求y、yx的函數(shù)表達(dá)式;

2)在春節(jié)期間,李華一家三口準(zhǔn)備去草莓園采摘草莓,采摘的草莓合在一起支付費(fèi)用,則李華一家應(yīng)選擇哪家草莓園更劃算?

查看答案和解析>>

同步練習(xí)冊(cè)答案