【題目】先化簡再求值:當(dāng)a=9時,求a+的值,甲乙兩人的解答如下:

甲的解答為:原式=a+=a+(1-a)=1.

乙的解答為:原式=a+=a+(a-1)=2a-1=17.

兩種解答中,_____的解答是錯誤的,錯誤的原因是當(dāng)a=9時______.

【答案】甲;1-a.

【解析】

首先對根號里的數(shù)或代數(shù)式通過完全平方公式、平方差公式等進(jìn)行化簡,注意在去掉根號時,要對化簡后的結(jié)果帶上絕對值,再根據(jù)已知參數(shù)的值看看絕對值里的代數(shù)式與零的大小關(guān)系,最后去掉絕對值即可得到最簡結(jié)果,再將參數(shù)的值代入即可.

解:甲是錯誤的,,沒有根據(jù)a的取值正確的去掉絕對值符號.

理由:a+,由完全平方式,a+,化簡,a+|1a|

當(dāng)a=9,1-a0,故對a+|1a|去掉絕對值符號,a-1+a,

合并同類項,得:2a-1

a=9代入2a-1,2×9-1=17

所以甲的答案錯誤,錯誤的原因是沒有根據(jù)a的取值正確的去掉絕對值符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC是邊長3cm的等邊三角形,動點(diǎn)P、Q同時從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,P、Q兩點(diǎn)停止運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時間為t(s),解答問題:當(dāng)t為何值時,△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋中,裝有紅、黃、白、黑四種只有顏色不同的小球,其中紅色小球有30個,黃、白、黑色小球的數(shù)目相同.為估計袋中黃色小球的數(shù)目,每次將袋中小球攪勻后摸出一個小球記下顏色,放回后再次攪勻…多次試驗發(fā)現(xiàn)摸到紅球的頻率是 ,則估計黃色小球的數(shù)目是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)y= 的圖象相交于點(diǎn)B(m,1).

(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△PAB為直角三角形,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,連接AD,點(diǎn)EAD的中點(diǎn),連接BE并延長交CDF點(diǎn).

(1)請說明△ABE≌△DFE的理由;

(2)連接CB,AC,若CBCDAC=CD,∠D=30°,CD=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于任意三點(diǎn)的“矩面積”,給出如下定義:“水平底”是任意兩點(diǎn)橫坐標(biāo)差的最大值;“鉛垂高”是任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”.例如:三點(diǎn)的坐標(biāo)分別為,則“水平底”,“鉛垂高”,“矩面積”.根據(jù)所給定義解決下面的問題:

1)若點(diǎn)的坐標(biāo)分別為,求這三點(diǎn)的“矩面積”;

2)若點(diǎn),含有的式子表示這三點(diǎn)的“矩面積”(結(jié)果需化簡);

3)已知點(diǎn),在軸上是否存在點(diǎn),使這三點(diǎn)的“矩面積”20?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周六上午,小亮去圖書館查資料,圖書館離家不遠(yuǎn),他步行去圖書館,查完資料后他又邊走邊轉(zhuǎn)去書店買書,在書店停留了幾分鐘后騎共享單車回家."已知小亮離家的距離()與離開家的時間()之間的關(guān)系如圖所示.請根據(jù)圖象回答下列問題:

1)小亮出發(fā)幾分鐘后到達(dá)圖書館?

2)小亮查完資料后步行的速度是多少?

3)小亮離開圖書館,幾點(diǎn)回到家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點(diǎn)分別在四條平行線l1、l2、l3、l4上,這四條直線中相鄰兩條之間的距離依次為h1、h2、h3 . 若h1=2,h2=1,則正方形ABCD的面積為(
A.9
B.10
C.13
D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x10;乙由于漏抄了第二個多項式中x的系數(shù),得到的結(jié)果為2x29x+10

(1)ab的值.

(2)計算這道乘法題的正確結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案