【題目】如圖,直線與坐標(biāo)軸分別相交于點(diǎn)A、B,點(diǎn)C在線段AO上,點(diǎn)D在線段AB上,且AC=AD.將△ACD沿直線CD翻折得到△ECD.
(1)求AB的長(zhǎng);
(2)求證:四邊形ACED是菱形;
(3)設(shè)點(diǎn)C的坐標(biāo)為(0,),△ECD與△AOB重合部分的面積為,求關(guān)于的函數(shù)解析式,并直接寫(xiě)出自變量的取值范圍.
【答案】(1);(2)證明過(guò)程見(jiàn)解析;(3)
【解析】
(1)先分別求出OA,OB的長(zhǎng)度,然后利用勾股定理即可求解;
(2)首先根據(jù)折疊的性質(zhì)得出,然后通過(guò)等量代換得出,則結(jié)論可證;
(3)分兩種情況討論:當(dāng)時(shí),利用求解;當(dāng)時(shí),利用求解.
解:(1)當(dāng)時(shí),,得,當(dāng)時(shí),,得.
;
(2)證明:是由翻折得到的,
.
,
,
四邊形是菱形.
(3) ,
,
.
∵四邊形是菱形,
,
.
在中,.
當(dāng)時(shí),作,垂足為,
,
,
;
當(dāng)時(shí),設(shè)分別交軸于點(diǎn),
四邊形是菱形,
,
,
,
.
,
,
,
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為提高學(xué)生體考成績(jī),對(duì)全校300名九年級(jí)學(xué)生進(jìn)行一分種跳繩訓(xùn)練.為了解學(xué)生訓(xùn)練效果,學(xué)校體育組在九年級(jí)上學(xué)期開(kāi)學(xué)初和學(xué)期末分別對(duì)九年級(jí)學(xué)生進(jìn)行一分種跳繩測(cè)試,學(xué)生成績(jī)均為整數(shù),滿分20分,大于18分為優(yōu)秀.現(xiàn)隨機(jī)抽取了同一部分學(xué)生的兩次成績(jī)進(jìn)行整理、描述和分析.(成績(jī)得分用x表示,共分成五組:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)
開(kāi)學(xué)初抽取學(xué)生的成績(jī)?cè)?/span>D組中的數(shù)據(jù)是:17,17,17,17,17,18,18.
學(xué)期末抽取學(xué)生成績(jī)統(tǒng)計(jì)表
學(xué)生成績(jī) | A組 | B組 | C組 | D組 | E組 |
人數(shù) | 0 | 1 | 4 | 5 | a |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
開(kāi)學(xué)初抽取學(xué)生成績(jī) | 16 | b | 17 |
學(xué)期末抽取學(xué)生成績(jī) | 18 | 18.5 | 19 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)直接寫(xiě)出圖表中a、b的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)假設(shè)該校九年級(jí)學(xué)生都參加了兩次測(cè)試,估計(jì)該校學(xué)期末成績(jī)優(yōu)秀的學(xué)生人數(shù)比開(kāi)學(xué)初成績(jī)優(yōu)秀的學(xué)生人數(shù)增加了多少?
(3)小莉開(kāi)學(xué)初測(cè)試成績(jī)16分,學(xué)期末測(cè)試成績(jī)19分,根據(jù)抽查的相關(guān)數(shù)據(jù),請(qǐng)選擇一個(gè)合適的統(tǒng)計(jì)量評(píng)價(jià)小莉的訓(xùn)練效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),拋物線與線段有兩個(gè)不同的交點(diǎn),其中點(diǎn),點(diǎn).有下列結(jié)論:
①直線的解析式為;②方程有兩個(gè)不相等的實(shí)數(shù)根;③a的取值范圍是或.
其中,正確結(jié)論的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形具有不穩(wěn)定性,對(duì)于四條邊長(zhǎng)確定的四邊形.當(dāng)內(nèi)角度數(shù)發(fā)生變化時(shí),其形狀也會(huì)隨之改變.如圖,改變正方形ABCD的內(nèi)角,正方形ABCD變?yōu)榱庑?/span>ABC′D′.若∠D′AB=30°,則菱形ABC′D′的面積與正方形ABCD的面積之比是( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)承接了27000件產(chǎn)品的生產(chǎn)任務(wù),計(jì)劃安排甲、乙兩個(gè)車(chē)間的共50名工人,合作生產(chǎn)20天完成.已知甲、乙兩個(gè)車(chē)間利用現(xiàn)有設(shè)備,工人的工作效率為:甲車(chē)間每人每天生產(chǎn)25件,乙車(chē)間每人每天生產(chǎn)30件.
(1)求甲、乙兩個(gè)車(chē)間各有多少名工人參與生產(chǎn)?
(2)為了提前完成生產(chǎn)任務(wù),該企業(yè)設(shè)計(jì)了兩種方案:
方案一 甲車(chē)間租用先進(jìn)生產(chǎn)設(shè)備,工人的工作效率可提高20%,乙車(chē)間維持不變.
方案二 乙車(chē)間再臨時(shí)招聘若干名工人(工作效率與原工人相同),甲車(chē)間維持不變.
設(shè)計(jì)的這兩種方案,企業(yè)完成生產(chǎn)任務(wù)的時(shí)間相同.
①求乙車(chē)間需臨時(shí)招聘的工人數(shù);
②若甲車(chē)間租用設(shè)備的租金每天900元,租用期間另需一次性支付運(yùn)輸?shù)荣M(fèi)用1500元;乙車(chē)間需支付臨時(shí)招聘的工人每人每天200元.問(wèn):從新增加的費(fèi)用考慮,應(yīng)選擇哪種方案能更節(jié)省開(kāi)支?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:
2+22=23﹣2;
2+22+23=24﹣2;
2+22+23+24=25﹣2;
2+22+23+24+25=26﹣2;
…
已知按一定規(guī)律排列的一組數(shù):220,221,222,223,224,…,238,239,240,若220=m,則220+221+222+223+224+…+238+239+240=_____(結(jié)果用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將四邊形ABCD放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A.B、C、D均落在格點(diǎn)上.
(Ⅰ)計(jì)算AD2+DC2+CB2的值等于_____;
(Ⅱ)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出一個(gè)以AB為一邊的矩形,使該矩形的面積等于AD2+DC2+CB2,并簡(jiǎn)要說(shuō)明畫(huà)圖方法(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩家酒店規(guī)模相當(dāng),去年下半年的月盈利折線統(tǒng)計(jì)圖如圖所示.
(1)要評(píng)價(jià)這兩家酒店7~12月的月盈利的平均水平,你選擇什么統(tǒng)計(jì)量?求出這個(gè)統(tǒng)計(jì)量;
(2)已知A,B兩家酒店7~12月的月盈利的方差分別為1.073(平方萬(wàn)元),0.54(平方萬(wàn)元).根據(jù)所給的方差和你在(1)中所求的統(tǒng)計(jì)量,結(jié)合折線統(tǒng)計(jì)圖,你認(rèn)為去年下半年哪家酒店經(jīng)營(yíng)狀況較好?請(qǐng)簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,∠ABD=60°,點(diǎn)E從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿邊AB運(yùn)動(dòng),到點(diǎn)B停止運(yùn)動(dòng).過(guò)點(diǎn)E作EF∥BD交AD于點(diǎn)F,將△AEF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)得到△GEH,且點(diǎn)G落在線段EF上,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒)(0<t<3).
(1)若t=1,求△GEH的面積;
(2)若點(diǎn)G在∠ABD的平分線上,求BE的長(zhǎng);
(3)設(shè)△GEH與△ABD重疊部分的面積為T,用含t的式子表示T,并直接寫(xiě)出當(dāng)0<t<3時(shí)T的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com