【題目】如圖,一次函數(shù)y1=﹣x+5的圖象與反比例函數(shù)y2=(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y2>y1>0時,寫出自變量x的取值范圍.
【答案】(1) 反比例函數(shù)的解析式為:y2=;(2)4<x<5或0<x<1
【解析】
試題(1)將點A 的橫坐標(biāo)代入直線的解析式求出點A的坐標(biāo),然后將的A的坐標(biāo)代入反比例函數(shù)的解析式即可.
(2)當(dāng)y2>y1>0時,雙曲線便在直線的上方且在x軸的上方,所以求出直線與雙曲線及x軸的交點后可由圖象直接寫出其對應(yīng)的x取值范圍.
試題解析:(1)∵點A(1,n)在一次函數(shù)y1=-x+5的圖象上,
∴當(dāng)x=1時,y=-1+5=4
即:A點的坐標(biāo)為:(1,4)
∵點A(1,4)在反比例函數(shù)y2=(k≠0)的圖象上
∴k=1×4=4
∴反比例函數(shù)的解析式為:y2=
(2)如下圖所示:
解方程組:得或
∴B點的坐標(biāo)為(4,1)
直線與x軸的交點C為(5,0)
由圖象可知:當(dāng)4<x<5或0<x<1時,y2>y1>0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)公司推出了一系列上網(wǎng)包月業(yè)務(wù),其中的一項業(yè)務(wù)是10M40元包240小時,且其中每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,小剛和小明家正好選擇了這項上網(wǎng)業(yè)務(wù).
(1)當(dāng)x≥240時,求y與x之間的函數(shù)關(guān)系式;
(2)若小剛家10月份上網(wǎng)200小時,則他家應(yīng)付多少元上網(wǎng)費?
(3)若小明家10月份上網(wǎng)費用為62元,則他家該月的上網(wǎng)時間是多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.
(3)應(yīng)用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),完成下列問題:
(1)求此函數(shù)圖像與x軸、y軸的交點坐標(biāo);
(2)畫出此函數(shù)的圖像;觀察圖像,當(dāng)時,x的取值范圍是 ;
(3)平移一次函數(shù)的圖像后經(jīng)過點(-3,1),求平移后的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法中正確的序號是_____.
①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,E,D是BC邊的三等分點,F是AC的中點,BF分別交AD,AE于點G,H,則BG∶GH∶HF等于( )
A. 1∶2∶3 B. 3∶5∶2 C. 5∶3∶2 D. 5∶3∶1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系xoy中,點A、B分別在x、y軸的正半軸上,將線段AB繞點B順時針旋轉(zhuǎn)90°,點A的對應(yīng)點為點C.
(1)若A(6,0),B(0,4),求點C的坐標(biāo);
(2)以B為直角頂點,以AB和OB為直角邊分別在第一、二象限作等腰Rt△ABD和等腰Rt△OBE,連DE交y軸于點M,當(dāng)點A和點B分別在x、y軸的正半軸上運動時,判斷并證明AO與MB的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com