【題目】如圖,一次函數(shù)y1=﹣x+5的圖象與反比例函數(shù)y2=(k≠0)在第一象限的圖象交于A(1,n)和B兩點.

(1)求反比例函數(shù)的解析式;

(2)當(dāng)y2>y1>0時,寫出自變量x的取值范圍.

【答案】(1) 反比例函數(shù)的解析式為:y2=;(2)4<x<50<x<1

【解析】

試題(1)將點A 的橫坐標(biāo)代入直線的解析式求出點A的坐標(biāo),然后將的A的坐標(biāo)代入反比例函數(shù)的解析式即可.

(2)當(dāng)y2>y1>0時,雙曲線便在直線的上方且在x軸的上方,所以求出直線與雙曲線及x軸的交點后可由圖象直接寫出其對應(yīng)的x取值范圍.

試題解析:(1)∵點A(1,n)在一次函數(shù)y1=-x+5的圖象上,

∴當(dāng)x=1時,y=-1+5=4

即:A點的坐標(biāo)為:(1,4)

∵點A(1,4)在反比例函數(shù)y2=(k≠0)的圖象上

k=1×4=4

∴反比例函數(shù)的解析式為:y2=

(2)如下圖所示:

解方程組:

B點的坐標(biāo)為(4,1)

直線與x軸的交點C為(5,0)

由圖象可知:當(dāng)4<x<50<x<1時,y2>y1>0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE,求證AF=AE;

3如圖3,CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形CEDABC的下方時,AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)公司推出了一系列上網(wǎng)包月業(yè)務(wù),其中的一項業(yè)務(wù)是10M40元包240小時,且其中每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,小剛和小明家正好選擇了這項上網(wǎng)業(yè)務(wù).

1)當(dāng)x≥240時,求yx之間的函數(shù)關(guān)系式;

2)若小剛家10月份上網(wǎng)200小時,則他家應(yīng)付多少元上網(wǎng)費?

3)若小明家10月份上網(wǎng)費用為62元,則他家該月的上網(wǎng)時間是多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對稱圖形得到A'BC,連結(jié)AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù),完成下列問題:

1)求此函數(shù)圖像與x軸、y軸的交點坐標(biāo);

2)畫出此函數(shù)的圖像;觀察圖像,當(dāng)時,x的取值范圍是 ;

3平移一次函數(shù)的圖像后經(jīng)過點(-31),求平移后的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBC,DCEC,AC=BC,DC=EC,AC=3,CE=4,則AD2+BE2=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,E,DBC邊的三等分點FAC的中點,BF分別交ADAE于點G,H,BGGHHF等于(  )

 

A. 123 B. 352 C. 532 D. 531

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,點AB分別在x、y軸的正半軸上,將線段AB繞點B順時針旋轉(zhuǎn)90°,點A的對應(yīng)點為點C

1)若A60),B04),求點C的坐標(biāo);

2)以B為直角頂點,以ABOB為直角邊分別在第一、二象限作等腰Rt△ABD和等腰Rt△OBE,連DEy軸于點M,當(dāng)點A和點B分別在xy軸的正半軸上運動時,判斷并證明AOMB的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案