閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”,我們可得出一種計(jì)算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半。
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B。
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連結(jié)PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及;
(3)是否存在一點(diǎn)P,使S△PAB=S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
解:(1)設(shè)拋物線的解析式為:,
把A(3,0)代入解析式求得a=-1,
所以,
設(shè)直線AB的解析式為:,
求得B點(diǎn)的坐標(biāo)為(0,3),
把A(3,0),B(0,3)代入中,
解得k=-1,b=3,
所以;
(2)因?yàn)镃點(diǎn)坐標(biāo)為(1,4),
所以當(dāng)x=1時(shí),y1=4,y2=2,
所以CD=4-2=2,
(平方單位);
(3)假設(shè)存在符合條件的點(diǎn)P,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h,則
,
由S△PAB=S△CAB,
得:,
化簡(jiǎn)得:,
解得:
代入中,解得P點(diǎn)坐標(biāo)為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:
S△ABC=
1
2
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(3)是否存在拋物線上一點(diǎn)P,使S△PAB=
9
8
S△CAB?若存在,求出P點(diǎn)的坐標(biāo);若精英家教網(wǎng)不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對(duì)稱軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫(xiě)出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:精英家教網(wǎng)
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(-1,-4),交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第三象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
(3)是否存在一點(diǎn)P,使S△PAB=S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省巢湖市無(wú)為縣中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
(3)是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案